

Canada's national laboratory for particle and nuclear physics and accelerator-based science

Lepton Flavor Universality

Douglas Bryman University of British Columbia &TRIUMF

Reference: D.B., A. Crivillen, V. Cirigliano, and G. Inguglia, <u>2111.05338</u> [hep-ph], Ann. Rev. Nucl. Part. Sci. (to be pub.)

The University of British Columbia, Point Grey campus, and TRIUMF are located on the traditional, ancestral and unceded territory of the xwməθkwəy'əm (Musqueam) people.

The Flavor Puzzle

Leptons

Experiment/observations (way) ahead of theory.

Unexplained observations (no theory of flavor)

- Three ("identical") generations; universal interactions (why = 3? <?>?)
- Huge mass differences between and within the generations *Exceptionally small neutrino mass*
- CP violation (at least in the quark sector)
- Remarkable symmetry between leptons and quarks (GUT, scale?)

5/25/2022

How to Delve into the Flavor Puzzle?

Experiments

- Particle properties: dipole moments
- Lepton Flavor Universality (LFU) tests: compare ratios of rates "X→ ℓ_i/X→ ℓ_j "
- Non-SM flavor violation searches: $\ell_i \rightarrow \ell_j \gamma$

Theories – some may distinguish among flavors

- Short Distance effects
 - Distinct W- ℓ - ν couplings
 - Lepto-quarks
 - •
- Compositeness
- Heavy neutral leptons (confuse experimental tests)

Current Flavor Tensions in the SM

Several high precision measurements of accurately predicted SM processes show possible indications of violating Lepton Flavor Universality and CKM unitarity.

• Muon g-2 (4.2 σ)

Deviation from theory -- new physics?

- B Decay ratios: B → D*τ v/B → D*μv; B → K*μμ/B → K*ee R(D^(*)),R (K*), R(K): (2-4 σ);
 O(10%) deviations from universality. Both heavy quarks and leptons involved!
- CKM unitarity tests (3.7 σ): β and K decays
 May be related to LFUV.
- Lepton Flavor Universality in agreement with the SM at O(10⁻³) level in π, τ and K decays.

D.B., A. Crivellin, V. Cirigliano, and G. Inguglia, 2111.05338

Connection to LFU

 V_{ud} from β -decay & n-decay G_{μ}^{μ} Fermi const. from μ decay used to extract V_{ud} $V_{\mu\nu}$ from K_{13} and τ decay $\frac{V_{us}}{W}$ from $\frac{K_{\mu 2}}{M}$; also $\frac{K_{l3}}{M}$ V_{ud} $\pi_{\mu 2}$ π_{l3} Agreement is poor; uncertainties from experiment and theory. Deviations could be explained by small corrections ε_{ii} to W - l - v couplings^{*}

*Crivellin, Hoferichter, PRL 125, 111801 (2020)

Connecting CKM Unitarity and Lepton Flavor Universality

Modified $W - l - \nu$ Couplings from μ decay; $G_F = G_F^{\mathcal{L}}(1 + \varepsilon_{ee} + \varepsilon_{\mu\mu})$ input to $V_{\mu d}$ from Super-allowed β decay: $V_{\mu d}^{\beta} = V_{\mu d}^{\mathcal{L}}(1 - \varepsilon_{\mu\mu})$

Doug Bryman ARIEL 2022

Charged Lepton Flavor Universality in π Decay

$$R_{e/\mu}^{theory} = \frac{\Gamma(\pi \to e\nu(\gamma))}{\Gamma(\pi \to \mu\nu(\gamma))} = (1.23524 \pm 0.00015) x 10^{-4} \quad (\pm 0.012\%)$$

Marciano/Sirlin \to Cirigliano

Possibly the most accurately calculated decay process involving hadrons.

Current Result (PDG): $R_{e/\mu}^{exp} = 1.2327 \pm 0.0023 \times 10^{-4} (\pm 0.19\%)$ $\frac{A_{\mu}}{A_{e}} = 1.0010 \pm 0.0009 (\pm 0.09\%)$ GOALS: PEN, PIENU ($R_{e/\mu}^{exp} \le \pm 0.1\%$); PIONEER (± 0.01\%)

Experiments are an order of magnitude less precise than theory.

μ -e Flavor Universality tested at O(10⁻³)

Light meson and Tau experiments compare SM expectations ($A_e = A_u = A_\tau$)

τ - μ/e Flavor Universality tested at O(10⁻³)

$\pi^+ \rightarrow e^+ \nu$ LFU Tests: Sensitivity to High Mass Scales

Phase I PIONEER Goal: 0.01 % measurement $\rightarrow \Lambda \sim 3000 \text{ TeV}$

Many others:

- Leptoquarks
- Excited gauge bosons
- Compositeness
- SU(2)xSU(2)xSU(2)xU(1)
- Hidden sector

Induced Scalar Currents Campbell and Maybury (2005), Marciano $R_{e/\mu}(0.01\%): \Lambda_{s} > 180 TeV(!)$

Apparent LFUV could also appear via massive sterile neutrinos (e.g. in $\pi^+ \rightarrow l^+ v_H$ with implications for leptogenesis (Elahi et al. 2109.09751).

"LFU Violation" Example: Massive Sterile Neutrinos e.g. $\pi^+ \rightarrow e^+ v_H$

Heavy Neutral Leptons Coupling to 1st Generation

2203.08039 [hep-ph]

Doug Bryman ARIEL 2022

CKM Unitarity: Vud, Vus/Vud

Tested in super-allowed β (V_{ud}) and K decays (V_{us}/V_{ud})

Czarnecki,
Marciano,
Sirlin (2020)

$$\frac{B(K \to \pi l \nu)}{B(\pi^+ \to \pi^0 e^+ \nu)}: \text{ Theoretically clean method to obtain } \frac{V_{us}}{V_{ud}}.$$

$$\frac{V_{us}}{V_{ud}} < \pm 0.2\%.$$
Offers a new complementary constraint in the $V_{us} - V_{ud}$ plane.
$$\pi^+ \to \pi^0 e^+ \nu: \text{ Theoretically cleanest method to obtain } V_{ud}$$
PIBETA Experiment $(\pm 0.6\%)$

$$B(\pi^+ \to \pi^0 e^+ \nu) = (1.038 \pm 0.004 + 0.004 + 0.002) \times 10^{-8}$$

PIBETA Experiment
$$(\pm 0.6\%)$$

 $B(\pi^+ \rightarrow \pi^0 e^+ \nu) = (1.038 \pm 0.004_{stat} \pm 0.004_{syst} \pm 0.002_{\pi e2}) \times 10^{-8}$
 $V_{ud} = 0.9738(28)_{exp} (1)_{th}$
Not presently competitive precision for V_{ud} . (Needs 10x precision.

Pion "β" Decay with Axion-like particles (ALP):

 $\pi \rightarrow e \nu a \& \pi \rightarrow e \nu a; a \rightarrow \gamma \gamma_{alp-\pi \text{ Mixing vs. } m_a}$

5/25/2022

Bordone, Buttazzo, Isidori, Monnard ArXiv:1705.10729

Testing LFU with
$$K^+ \rightarrow \pi^+ \nu \overline{\nu}$$

Involves third generation quarks (top) and leptons (τ, v_{τ})

EFT approach to LFU violations new interactions with $U(2)_q \times U(2)_l$ symmetry. NP coupled to left-handed lepton and quark singlets. Tuned to R(D*)=1.25*SM.

How to improve experimental precision by another order of magnitude to match theory?

$$R_{e/\mu}^{th} = (1.23524 \pm 0.00015) x 10^{-4} \pm 0.012\%$$

15 x more precise than experiments!

$\pi^+ \rightarrow e^+ \nu$ Experiments -- stopped pions

- CERN (1958) 6 events
- Chicago (1960) *magnetic spectrometer*
 - 1st precise measurement ±6%
- Columbia (1964) *Nal(Tl) crystal*; ± 2%
- TRIUMF (1986, 1992, 2015 → PIENU) NaI(TI)/Csl crystals

 $\pm 0.24\% \rightarrow 0.1\%$? 10⁷ events

• PSI (1994 → **PEN**)

BGO \rightarrow Csl crystals >10⁷ events ± 0.4% \rightarrow <0.1%?

• **PIONEER:** \rightarrow <0.01%?

5/25/2022

$\frac{\Gamma(\pi \to ev)}{\Gamma(\pi \to \mu v)}$: Experimental Method

Simple experiment: count e^+ from π^+ decay

$$\frac{N(\pi \to ev)}{N(\pi \to \mu v)} \to \frac{N(\pi \to ev)}{N(\pi \to \mu \to evv)}$$

Doug Bryman ARIEL 2022

$\pi \rightarrow e\nu$: Experimental Method

- Pions stopped in an active target
- Positrons tracked and energy measured in a calorimeter
- Decays tagged in target and by energy and timing
- Principal sytematic uncertainty: Low energy "tail" of $\pi \rightarrow ev$ events under $\mu \rightarrow evv$ "background".

Many systematic effects cancel in measuring the ratio $\frac{\pi \rightarrow e}{\pi \rightarrow \mu \rightarrow e}$.

PIONEER Next Generation Rare Pion Decay Experiment Paul Scherrer Institut

W. Altmannshofer²³, H. Binney¹², E. Blucher²⁸, D. Bryman^{2,3}, S. Chen⁴, V. Cirigliano⁵, A. Crivellin^{6,7,8}, S. Cuen-Rochin⁹, A. Czarnecki¹⁰, A. DiCanto¹⁹, L. Doria¹¹, A.
Fienbert²⁹, A. Gaponenko²⁴, A. Garcia¹², L. Gibbons¹³, C. Glaser¹⁴, M. Gorchtein¹¹, T.
Gorringe¹⁵, S. Gori²³, A. Grillo²³, D. Hertzog¹², Z. Hodge¹², M. Hoferichter¹⁶, S. Ito¹⁸, T. Iwamoto¹⁷, D. Jaffe¹⁹, P. Kammel¹², J. Kaspar ¹², S. Kettel¹⁹, B. Kiburg²⁴, A.
Knecht⁶, T. Koffas²⁶, K. Labe¹³, J. LaBounty¹², U. Langenegger⁶, C. Malbrunot⁸, W.
Marciano¹⁹, S. M. Mazza²³, S. Mihara²⁰, R. Mischke³, T. Mori¹⁷, J. Mott¹⁹, E.
Muldoon¹², T. Numao³, W. Ootani¹⁷, C. Ortega Hernandez¹, K. Pachel³, D.
Počanić¹⁴, C. Polly²⁴, D. Ries¹¹, R. Roehnelt¹², D. Salvat²¹, B. Schumm²³, A.
Seiden²³, A. Soter²⁵, R. Shrock²⁷, T. Sullivan²², D. Sweigart¹², V. Tischenko¹⁹, A.
Tricoli¹⁹, B. Velghe³, T. Wataru¹⁷, C. Welch¹², V. Wong³, and E. Worster¹⁹ ¹ Universidad Nacional Autonoma de Mexico ² University of British Columbia ³ TRIUMF ⁴ Tsinghua University ⁵ Los Alamos National Laboratory ⁶ Paul Scherrer Institute ⁷ University of Zurich ⁸ CERN ⁹ Universidad Autonoma de Sinaloa ¹⁰ University of Alberta ¹¹ Johannes Gutenberg University of Mainz ¹² University of Washington ¹³ Cornell University ¹⁴ University of Virginia ¹⁵ University of Kentucky ¹⁶ University of Bern ¹⁷ University of Tokyo ¹⁸ Okayama University ¹⁹Brookhaven National Laboratory 20 KEK ²¹ Indiana University ²² University of Victoria ²³ University of California Santa Cruz ²⁴Fermilab ²⁵ETH Zurich ²⁶Carleton University ²⁷Stoney Brook University ²⁸University of Chicago ²⁹Pennsylvania State University

PIONEER Next Generation Rare Pion Decay Experiment

PIONEER Goals:

• Phase I:

* Measure
$$R_{e/\mu} = \frac{\Gamma(\pi \to ev + \pi \to ev\gamma)}{\Gamma(\pi \to \mu v + \pi \to \mu v\gamma)}$$
: $O(\pm 0.01\%)$

* Improve exotic decay search sensitivities by an order of magnitude

e.g.
$$\pi \to ev_H; \pi \to \mu v_H; \pi \to e / \mu v v \overline{v}; \pi \to e / \mu v X$$

• Phase II \to III:

* Measure
$$R_{\pi\beta} = \frac{\Gamma(\pi^+ \to \pi^0 e^+ \nu)}{\Gamma(\pi^+ \to all)}$$
: $O(\pm 0.2\% \to \pm 0.05\%)$

PIONEER Method : $\pi^+ \rightarrow e^+ v$

 $(\rightarrow$ Improvements Compared to PIENU)

25 X₀, 3π sr calorimeter → Reduce Tail correction (5 x); → Improve uniformity (5 x) Fast scintillation response (LXe)
Active Tracking Target → Reduce Tail correction uncertainty (10 x)
Fast pulse shape → allow π → μ → e decay chain observation
Fast electronics and pipeline DAQ → Improve efficiency

PIONEER Central Region

Active Target (ATAR) Low Gain Avalanche Detector $\pi \rightarrow \mu \rightarrow e$ tracking 48 layers X/Y strips Strips: 120 μ m thick, 200 μ m wide Fast pulses, timing <100 ps Fully active for energy measurements

LGAD Si Strip Target

• Design: 48 layer Si strip target; stop pions

- Compact 2x2x1 cm block full of silicon strips
- •See all $\pi \rightarrow \mu$ decays;
- •Track $\pi \rightarrow e$ and $\pi \rightarrow \mu \rightarrow e$

Requirements

- Longitudinal segmentation: Track, stop, localize pions; detect decays in flight
- Compact, efficient: no dead material
- Fast collection time: separate pulses that are close in time from $\pi \rightarrow \mu \rightarrow e$ and $\pi \rightarrow e$ decays
- Large Dynamic range (1000): detect energy deposition from positrons and slow pions/muons

R&D in progress

Simulated ATAR Event Displays

X vs. Z

Yvs.Z

 $dE_{\pi,\mu}$ vs. Z

PIONEER: LXe Scintillation Calorimeter

Performance expectations based on MEG LXe calorimeter Active volume 2000 I

> $25 X_0$ $\Delta t \sim 100 \text{ ps}$

PIONEER Simulated Energy Spectra

Background Suppression

Low energy tail measured *in situ using ATAR suppression of* μ *decay backgrounds.*

$\pi \rightarrow ev$: Estimated Uncertainties

To be verified by
simulations and
prototype
measurements.

Error Source	%	%
Statistics	0.19	0.007
Tail Correction	0.12	< 0.01
t_0 Correction	0.05	< 0.01
Muon DIF	0.05	0.005
Parameter Fitting	0.05	< 0.01
Selection Cuts	0.04	$<\!0.01$
Acceptance Correction	0.03	0.003
Total Uncertainty \star	0.24	\leq 0.01

(Calorimeter/ATAR) (ATAR timing/dE/dx) (ATAR) (Calorimeter/ATAR) (Calorimeter/ATAR) (Calorimeter)

*

Pion lifetime uncertainty not included

$\pi^+ \rightarrow \pi^0 e^+ \nu$: Estimated Uncertainties

	PiBeta	PIONEER (Phase II)	
Statistics	0.4%	0.1%	
Systematics	0.4%	<0.1% (ATAR (β), MC, Photonuclear, $\pi \rightarrow ev$)	
Total	0.64%	0.2%	

PIENU 2015 PIONEER Estimate

Exotic Searches in PIONEER Phase I

Searches for Sterile Neutrinos

Also to be improved by an order of magnitude: $\pi \rightarrow e/\mu v X; \ \pi \rightarrow e/\mu v v \overline{v}$

Connections: LFU, LFV, LNV and Sterile Neutrinos

Constraints on $|U_{ei}|^2$

$$\mu / \tau \rightarrow e\gamma, \mu / \tau \rightarrow 3e, \mu eC$$

 $0\nu \beta\beta$ Decay -- Majorana ν

Other connections with LNV : $\mu^- Z \rightarrow e^+ (Z - 2), K \rightarrow \pi \mu \mu \dots$

Charged Lepton Flavor Violation Another probe of the flavor puzzle

Many ongoing CLFV Experiments:

 $\mu - e$ Conversion ($\mu^- Z \rightarrow e^- Z$): Mu2e (Fermilab); COMET (JPARC) $O(10^{-12}) \rightarrow O(10^{-17})$ $\mu \rightarrow e \gamma, \mu \rightarrow 3e$: MEG (PSI); Mu3e (PSI) $O(10^{-13}) \rightarrow O(10^{-14}), O(10^{-12}) \rightarrow O(10^{-16})$ $\tau \rightarrow e / \mu \gamma, \tau \rightarrow 3e...$: Belle II (KEK), BESIII $O(10^{-8}) \rightarrow O(10^{-9})$ $K^+ \rightarrow \pi^+ \mu e, \dots$: NA62 (CERN) $O(10^{-10}) \rightarrow O(10^{-11})$ $B \rightarrow \mu e, \pi \mu e...: LHCB$ (CERN) $O(10^{-9}) \rightarrow O(10^{?})$ $Z \rightarrow \mu e, \tau \mu, \tau e...: LHC ATLAS, CMS (CERN)$ $O(10^{-7}) \rightarrow O(10^{?})$

Could a future upgrade of ARIEL or PERLE@Orsay Contribute?

CLFV at "ARIEL200" or PERLE

Blazek and King (arXiv:hep-ph/0408157v1) estimated the cross section for e+N $\rightarrow \mu$ +N at E_e=200 MeV in the Minimal Supersymmetric Standard Model (*MSSM*):

$$\sigma(e+N \to \mu+N) \sim 10^{-1} \left(\frac{M_W}{M_2}\right)^4 \left(\frac{(M_L^2)_{12}}{M_2^2}\right)^2 fb; \text{ and}$$

BR($\mu \to e\gamma$)~10⁻⁴ $\left(\frac{M_W}{M_2}\right)^4 \left(\frac{(M_L^2)_{12}}{M_2^2}\right)^2$

 $\sigma(e+N \to \mu+N) = 10^3 x BR(\mu \to e\gamma) fb$

Using the current MEG limit BR($\mu \rightarrow e\gamma$)<4.2x10⁻¹³ results in $\sigma(e+N \rightarrow \mu+N) < 4.2x10^{-10} fb$. Is this measurable?

ARIEL200 Fantasy Experiment

Say, MEG II discovers $\mu \rightarrow e\gamma$ at BR = 4.2×10^{-13} $\sigma_{200MeV}(e+Ta \rightarrow \mu+Ta) = 4.2 \times 10^{-10} fb$ 10 mA; 10 mm thick Ta target Number of μ^- events in 5 years: 230 Or, if 0 events observed $\rightarrow \sigma(e+Ta \rightarrow \mu+Ta) < 4 \times 10^{-12} fb$ $\rightarrow BR_{MSSM}(\mu \rightarrow e\gamma) < 4 \times 10^{-15}$ (O(10) x lower than current MEGII goal)

ARIEL200 Fantasy Experiment (à la COMET Phase 1)

Conclusions: Lepton Flavor Universality

 Lepton Flavor Universality and Lepton Flavor Violation reactions are especially sensitivity to new physics effects hinted at by several anomalies.

• $\mu/\pi/K/T/B/Z$ results anticipated from Muon g-2, MEGII, Mu2e, Mu3e, COMET, PIENU, PEN, NA62, BESSIII, BELLE-II, LHCB, LHC ATLAS/CMS. Important connections with searches for sterile neutrinos/dark sector particles, high mass scale physics, LNV, and $0\nu\beta\beta$ searches.

• A next generation pion decay experiment **PIONEER** aims at order of magnitude improvements in high precision for measurements of $\pi \rightarrow ev$ and pion beta decay to provide uniquely sensitive new information on Lepton Flavor Universality and CKM unitarity.

Could a future ARIEL upgrade or PERLE@Orsay play a role in this field?

5/25/2022