

New Experiments With Potential Applications for Ariel

Wolfgang Mittig

Dark decay of the neutron: the neutron lifetime puzzle

 τ_{bottle} = 879.6 +- 0.6 s counting remaining neutrons

 τ_{beam} = 888.0 +- 2.0 s counting emitted protons

Difference 4σ !!

Dark Matter Interpretation of the Neutron Decay Anomaly

Bartosz Fornal and Benjamín Grinstein PRL120(2018)191801

1% branch $n \rightarrow invisible + visible; n \rightarrow invisible$

see talk yesterday by Susan Gardner

The quasi-free neutron dark decay: detectable reaction product

M. Pfützner and K. Riisager PHYSICAL REVIEW C **97**, 042501(R) (2018) Nuclear dark decays: 937.9 MeV< m_X< m_n-S_n Fulfilled in neutron halo nuclei

Rough estimation of dark decay of the quasifree neutron of 11Be by M. Pfützner and K. Riisager

T¹/_{2 neutron}=880s

Life time anomaly $\sim 8s \sim 1\% \rightarrow$ partial lifetime= 880s * 100 = 88000sLifetime of ¹¹Be:13.8s $\rightarrow B\chi \sim 13/88000 \sim 1.5 * 10^{-4}$

Phase space corrections!!!

The quasi-free neutron dark decay

M. Pfützner and K. Riisager PHYSICAL REVIEW C 97, 042501(R) (2018)

1) How much ¹⁰Be is produced ? Produced in the ¹¹Be decay AMS at Cern Isolde: $B_{10Be} = 8.3(9) \times 10^{-6}$ K. Riisager et al., Phys. Lett. B 732, 305 (2014). 2) How much ¹⁰Be is produced by proton decay?: Measure the proton decay branch: C.Wrede@NSCL Triumf pAT-TPC

Direct Observation of Proton Emission in ¹¹Be

Y. Ayyad et al. Phys. Rev. Lett. 123, 082501 – Published 22 August 2019

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

1600

1560

The quasi-free neutron (dark) decay

- First direct observation of β⁻p decay in a neutron-rich nuclei.
 Branching ratio is 1.2x10⁻⁵, with 30% uncertainty... CERN-ISOLDE yield(ed) 8.0×10⁻⁶, so no indication of dark decay
- •A narrow resonance with $\Gamma=12(5)$ keV, $J^{\pi} = (1/2^+)$ in ¹¹B was inferred. $E_x = 11425(20)$ keV (proton decay energy 178+-20keV) with $\Gamma/\Gamma_{sp}\sim0.33$
- •Decay into the continuum would be characterized by a much smaller branching ratio (10⁻¹⁰)
- •Heated discussion: resonance, no resonance, ...
- •See <u>http://arxiv.org/abs/2205.04973</u>.

Questions to answer

 Can the existence of a ½+ state near threshold for proton emission in ¹¹B be confirmed or not? Can its characteristic features such as a significant spectroscopic factor be confirmed?

Evidence of near-threshold resonance in ¹¹B relevant to β -delayed proton emission of ¹¹Be.

Y. Ayyad,^{1,2,*} W. Mittig,^{2,3} T. Tang,² B. Olaizola,⁴ G. Potel,⁵ N. Rijal,² N. Watwood,² H. Alvarez-Pol,¹ D. Bazin,^{2,3} M. Caamaño,¹ J. Chen,⁶ M. Cortesi,² B. Fernández-Domínguez,¹ S. Giraud,² P. Gueye,^{2,3} R. Jain,^{2,3} B. Kay,⁶ E. A. Maugeri,⁷ B. Monteagudo,² F. Ndayisabye,^{2,3} S. N. Paneru,² J. Pereira,² E. Rubino,² C. Santamaria,² D. Schumann,⁷ J. Surbrook,^{2,3} L. Wagner,² J. C. Zamora,² and V. Zelevinsky^{2,3}

2) Can the branching ratio for proton decay of this state be confirmed or not? (C. Wrede et al., ongoing)

¹⁰Be beam from ReA3 thick target method to scan the resonance

Center nf

Facility for Rare Isotope Beams

Result: excitation function of elastic scattering 10Be+p

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

, Slide 8

TIME1100

Excitation function of elastic scattering ¹⁰Be+p

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University W.Mittig Ariel Workshop May 2022, Slide 9

Compare with other results: FSU

Observation of a Near-Threshold Proton Resonance in ¹¹B

E. Lopez-Saavedra,^{1,*} S. Almaraz-Calderon,^{1,†} B. W. Asher,¹ L. T. Baby,¹ N. Gerken,¹ K. Hanselman,¹ K. W. Kemper,¹ A. N. Kuchera,² A. B. Morelock,¹ J. F. Perello,¹ E. S. Temanson,¹ A. Volya,¹ and I. Wiedenhöever¹ ¹Department of Physics Florida State University Tallahassee Florida 32306, USA

²Department of Physics Fibria State University Talianassee Fibria 52506,057 ²Department of Physics Davidson College Davidson North Carolina 28035,USA

FIG. 1: Spectrum in the Ionization Chamber (IC) obtained using the E - ΔE sections during the present ${}^{10}\text{Be}(d,n){}^{11}\text{B}^* \rightarrow {}^{10}\text{Be} + p$ measurement. The location of the ${}^{10}\text{Be}$ recoils is well separated from the direct ${}^{10}\text{Be}$ beam. Other components present in the spectrum are the primary ${}^{9}\text{Be}$ beam as well as He and Li breakup channels.

FIG. 2: E - ΔE spectrum obtained in the silicon-detector telescope. Bands of α particles (⁴He), deuterons (d), and protons (p) are visible and well separated from each other. If the $\frac{1}{2}$ + state in ¹¹B has a significant spectroscopic factor it should be populated in a ¹⁰Be(d,n)¹¹B* - \rightarrow ¹⁰Be+p

Facility for Rare Isotope Beams

Compare with other results: FSU

FIG. 3: Excitation energy spectrum in ¹¹B reconstructed from the ¹¹B^{*} \rightarrow ¹⁰Be + p (red) and ¹¹B^{*} \rightarrow ⁷Li + α (blue). A prominent near-threshold peak at E_{ex} = 11.44 ± 0.04 MeV is visible in the proton spectrum.

FIG. 4: Energy-sum signals of ¹⁰Be + p events for the 11.44 MeV state, compared with a Monte Carlo simulation (in blue) that takes into account the DWBA-calculated angular distribution of the ¹⁰Be(d,n)¹¹B^{*} reaction. A value of $\ell = 0$ fits well the experimental data.

Michigan State University

Dark Decay of ⁶He

- Reminder: for estimation 1% decay branch for free neutron, so partial decay time 880*100s=88000s
- Branching ratio of a quasi-free neutron expected in a nucleus with a lifetime of T_{life} B ~ $T_{life}/88000s=0.806s/88000s^{-1*10^{-5}}->10^{-7}$

E819S_20 – June 11th to 17th 2021

Is there a dark decay of neutrons in ⁶He?

Branching ratio estimates of $B\chi = 1.2 \times 10^{-5}$ Allowed energy window : $M\chi < Mn - 975.45 \text{ keV}$

Hervé Savajols, Jean-Charles Thomas, Xavier Ledoux, Pierre Delahaye, Nathalie Lecesne, Dieter Ackermann, Marek Lewitowicz, Lucia. Caceres, Julien Piot, Christelle Stodel... (GANIL) Sergey Lukianov, Vladimir Smirnov, Dimitry Testov, Sergey Stukalov (JINR Dubna) Xavier Fléchard, Etienne Liénard ...(LPC) Vladimir Manéa, David Verney ... (IJCLab) W. Mittig, Y. Ayyad (NSCL/FRIB) Philippe Dessagne,... (IPHC)

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

, Slide 13

⁸He neutron decay in TETRA

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University W.Mittig Ariel Workshop May 2022lide 14

⁶He dark decay

Facility for Rare Isotope Beams

Possible Dark Matter Candidates Mass

Fig. 1. Estimated loci of select dark-matter models in the space of candidate mass in GeV versus dark-matter-candidate-nucleon interaction cross section in pb.

FRIB

Facility for Rare Isotope Beams

X17 boson: pAT-TPC for e+e- detection

Facility for Rare Isotope Beams

e+-e- pairs: seagulls

- 1) Use output of clustering
- 2) Take the maximum in the Hough plot
- 3) Calculate center and radius
- 4) Make circle fit of the hits near this circle → circle 1
- 5) Take out all points near this circle except near zero
- 6) Make Hough analysis for second circle
- 7) Make circle fit of the hits near this circle → circle 2

Facility for Rare Isotope Beams

e+-e- pairs: seagulls

W.Mittig Ariel Workshop May 2022 **Facility for Rare Isotope Beams** U.S. Department of Energy Office of Science

e+-e- pairs: backscattered electrons

backscattered electrons

W.Mittig Ariel Workshop May 2022 **Facility for Rare Isotope Beams** U.S. Department of Energy Office of Science Michigan State University

We must train the NI before the AI

Ronsac: Random Object Sample Consensus (Random Sample Consensus (Ransac) for linear objects is two dimensional, here it has 9 dimensions)

Multiparticle decay

Mass number

Facility for Rare Isotope Beams

Multiparticle decay: example ${}^{6}\text{Be} \rightarrow {}^{4}\text{He}+p+p$

S. M. Wang, N. Michel, W. Nazarewicz, and F. R. Xu, "Structure and decays of nuclear three-body systems: The Gamow coupled-channel method in Jacobi coordi- nates," Phys. Rev. C 96, 044307 (2017).

Simin Wang private Communication Fermion Pair Dynamics in Open Quantum Systems

S. M. Wang (王思敏) and W. Nazarewicz Phys. Rev. Lett. **126**, 142501 – Published 7 April 2021 K. Hagino and H. Sagawa. Decay dynamics of the unbound ²⁵O and ²⁶O nuclei. Phys. Rev. C, 93:034330, Mar 2016

Facility for Rare Isotope Beams

Multiparticle Decay Near Threshold ¹⁶O(α, α')xy: Squids

Facility for Rare Isotope Beams

Summary

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University