Electrodisintegration of ¹⁶O and determination of astrophysical S-factors of the inverse reaction

lvica Friščić

27 May 2022

New Scientific Opportunities with the TRIUMF ARIEL e-linac

University

of Zagreb

Modeling of stellar evolution

- Complicated part: transport of a material inside a star
- Easy part: nucleosynthesis of a burning stage is described by a system of differential equations which are very easy to solve
 - -> nuclear input enters in form of reaction rates at E_{G}
 - -> $^{12}C(\alpha, \gamma)^{16}O$ has the largest uncertainty compared to other rates
 - -> with triple-alpha reaction part of He-burning stage
 - -> affects C/O abundance, subsequent nucleosynthesis and end of live of massive stars

Example: R. Farmer et al., 2020 ApJL 902 L36

- Evolution of He-core in mass range between 30 and 200 M_{\odot} and $^{12}C(\alpha,\,\gamma)^{16}O$ rate in $\pm3\sigma_{C12}$ range
- Steps: 1 ${\rm M}_{\odot}$ and 0.5 $\sigma_{\rm C12}$ -> 2210 simulations
- For He-core > 40 M_☉ gamma rays can produce e⁻e⁺ pairs, radiation pressure drops, leading to gravitational collapse
- -> CC core collapse stars
- -> PISN pair instability supernovae
- -> PPISN pulsational pair instability supernovae
- Using LIGO/Virgo gravitational wave data from binary black hole mergers to determine their masses and subsequently $^{12}C(\alpha, \gamma)^{16}O$ rate

Constraints on ${}^{12}C(\alpha, \gamma){}^{16}O$ S-Factor

The cross section of ${}^{12}C(\alpha, \gamma){}^{16}O$ at E_G

- $\sigma \simeq 10^{-5}$ pb, due to large Coulomb barrier direct measurement would not feasible
- The cross section at E_G is dominated by two components:
- → E1 component, $J^{\pi} = 1^{-}$: subthreshold state at 7.117 MeV and broad resonance at 9.59 MeV
- → E2 component, J^{π} = 2⁺: subthreshold state at 6.917 MeV and narrow resonance at 9.85 MeV

L.R. Buchmann, C.A. Barnes, Nucl. Phys. A 777 (2006)

S(E)

¹²C(α , γ)¹⁶O S-factors components

R. J. deBoer et al., Rev. Mod. Phys. 89, 035007 (2017) and references therein

Nuclear measurements

Direct measurements	Indirect measurements	
¹² C(α, γ) ¹⁶ O; α beam: detection of angular distribution of γ; → S _{E1} and S _{E2}	β decay of ¹⁶ N: ¹⁶ O [*] $\rightarrow \alpha$ + ¹² C; \rightarrow S _{E1}	
α(¹²C,¹⁶O) γ ; ¹² C beam (inverse kinematic): detection of ¹⁶ O recoils; → S _{tot}	Inverse reaction	
$ \begin{array}{c} 120 \\ & \delta_2 - \delta_1 + \tan^{-1}(\eta/2) \\ & < \delta_2 - \delta_1 + \tan^{-1}(\eta/2) >_{\Delta E} \\ & \text{Smith et al. (2021)} \\ \end{array} $	Photodisintegration of ¹⁶ O: ¹⁶ O(γ , α) ¹² C	Electrodisintegration of ¹⁶ O: ¹⁶ O(e, e'α) ¹² C
	Bubble chamber, R. J. Holt et al., (2018), arXiv:1809.10176	I. F., W. T. Donnelly and R. G. Milner, Phys. Rev. C 100, (2019) 025804
	Time projection chamber , M. Gai et al., JINST 5, P12004 (2010), R. Smith et al., Nat. Commun. 12, 5920 (2021)	S. Lunkenheimer, PhD Thesis 2022, University of Mainz, Germany, MAGIX @Mainz
0 1.5 E_{cm}^{eff} (MeV)	-	-

Advantage of ¹⁶O(e,e'α)¹²C

- Inverse reaction: larger cross section than direct reaction
- New generation of energy recovery linear (ERL) accelerators with I ≥ 10 mA (MESA @Mainz, CBETA @Cornell) + oxygen cluster gas-jet target with thickness > 10¹⁸ atoms/cm² (MAGIX @Mainz)
 - => Luminosity > 10³⁵ 1/(cm² s)
- Reaction involves virtual photon exchange

α

θα

 θ_{C}

12**C**

Reaction plane

 $\gamma^*(\omega,q)$

Scattering plane

Schematic layout of the ideal experiment

CBETA e-beam: 40 mA, E₀ = 78, 114, 150 MeV

Schematic layout of MAGIX approach

New Scientific Opportunities with the TRIUMF ARIEL e-linac 2022

Systematics from oxygen isotopes

• Oxygen isotope abundance: ¹⁶O 99.757%, ¹⁷O 0.038% and ¹⁸O 0.205%

 $Q(^{16}O \rightarrow \alpha + ^{12}C) = -7.162 \text{ MeV}$ $Q(^{17}O \rightarrow \alpha + ^{13}C) = -6.359 \text{ MeV}$ $Q(^{18}O \rightarrow \alpha + ^{14}C) = -6.228 \text{ MeV}$

 Photonuclear cross sections: natural abundance of O isotopes + depletion of ¹⁷O and ¹⁸O by factor 1000, and 5 ppmv for ¹⁴N

K. J. R. Rosman, P. D. P. Taylor, Pure Appl. Chem 71 (1999) 1593

https://wiki.jlab.org/ciswiki/index.php/Simulations_and_Backgrounds#Relevant_Theoretical_Cross_Sections

Systematics from oxygen isotopes: Solution

• SRIM simulation: energy loss of α -particles in 2 mm wide oxygen jet, with a density of 6.65·10⁻⁴ g/cm³, E_e = 114 MeV, θ_e =15°, 1.0 $\leq E_{\alpha}^{cm} \leq$ 1.1 MeV

Virtual photon advantage

• SRIM simulation: angular spread of α -particles in 2 mm wide oxygen jet, with a density of 6.65 \cdot 10⁻⁴ g/cm³, E_e = 114 MeV, θ_e = 15° and 35°, 1.0 $\leq E_{\alpha}^{cm} \leq$ 1.1 MeV

The cross section formulas

• Electrodisintegration of ¹⁶O:

$$\frac{d\sigma}{dE'_{e}d\Omega_{e}d\Omega_{\alpha}^{cm}} = \frac{M_{\alpha}M_{12C}}{8\pi^{3}W} \frac{p_{\alpha}^{cm}}{(\hbar c)^{3}} \sigma_{Mott}(\tilde{v}_{L}R_{L} + \tilde{v}_{T}R_{T} + \tilde{v}_{LT}R_{LT} + \tilde{v}_{TT}R_{TT})$$
A. S. Raskin and T. W. Donnelly, Ann. of Phys. 191 (1989)

• Direct reaction ${}^{12}C(\alpha, \gamma){}^{16}O$:

$$\frac{d\sigma}{d\Omega_{\gamma}^{cm}}\bigg|_{(\alpha,\gamma)} = \frac{M_{\alpha}M_{12C}}{2\pi W} \frac{E_{\gamma}}{\hbar c} \frac{\alpha}{p_{\alpha}^{cm}} \boldsymbol{R}_{T,(\alpha,\gamma)}$$

 \tilde{v}_k lepton kinematic factors R_k response functions

 $R_{T,(\alpha,\gamma)} = R_T$ in real photon limit

Response functions for J^{\pi} = 0^{+} nuclei

$$R_{L} = P_{0}(\cos \theta_{\alpha}) \left(|t_{C0}|^{2} + |t_{C1}|^{2} + |t_{C2}|^{2} \right) \qquad R_{T} = P_{0}(\cos \theta_{\alpha}) \left(|t_{E1}|^{2} + |t_{E2}|^{2} \right) + P_{1}(\cos \theta_{\alpha}) \left(2\sqrt{3}|t_{C0}||t_{C1}|\cos(\delta_{C1} - \delta_{C0}) + 4\sqrt{\frac{3}{5}}|t_{C1}||t_{C2}|\cos(\delta_{C2} - \delta_{C1}) \right) \qquad + P_{1}(\cos \theta_{\alpha}) \left(\frac{6}{\sqrt{5}}|t_{E1}||t_{E2}|\cos(\delta_{E2} - \delta_{E1}) \right) + P_{2}(\cos \theta_{\alpha}) \left(2|t_{C1}|^{2} + \frac{10}{7}|t_{C2}|^{2} + 2\sqrt{5}|t_{C0}||t_{C2}|\cos(\delta_{C2} - \delta_{C0}) \right) \qquad + P_{2}(\cos \theta_{\alpha}) \left(- |t_{E1}|^{2} + \frac{5}{7}|t_{E2}|^{2} \right) + P_{3}(\cos \theta_{\alpha}) \left(6\sqrt{\frac{3}{5}}|t_{C1}||t_{C2}|\cos(\delta_{C2} - \delta_{C1}) \right) \qquad + P_{3}(\cos \theta_{\alpha}) \left(-\frac{6}{\sqrt{5}}|t_{E1}||t_{E2}|\cos(\delta_{E2} - \delta_{E1}) \right) + P_{4}(\cos \theta_{\alpha}) \left(\frac{18}{7}|t_{C2}|^{2} \right) \qquad + P_{4}(\cos \theta_{\alpha}) \left(-\frac{12}{7}|t_{E2}|^{2} \right) R_{TT} = -R_{T}\cos(2\phi_{\alpha})$$

Matrix elements and coefficients

• Multipole matrix elements ($q_0 = 1.2 \text{ fm}^{-1}$):

$$t_{EJ} = \frac{\omega}{q} \left(\frac{q}{q_0}\right)^J a'_{EJ} \left[1 + \left(\frac{q}{q_0}\right)^2 b'_{EJ}(q)\right] e^{-\left(\frac{q}{q_0}\right)^2} \qquad t_{CJ} = \left(\frac{q}{q_0}\right)^J a'_{CJ} \left[1 + \left(\frac{q}{q_0}\right)^2 b'_{CJ}(q)\right] e^{-\left(\frac{q}{q_0}\right)^2}$$

(t_{C0} leading dependence cannot occur due to orthogonality of initial and final state)

• Long wavelength limit and continuity equation:

$$t_{EJ} \rightarrow -\sqrt{\frac{J+1}{J}} \left(\frac{\omega}{q}\right) t_{CJ} \qquad a'_{EJ} = -\sqrt{\frac{J+1}{J}} a'_{CJ}$$

Leading order coefficients

• Second order polynomial fit to data $E_{\alpha}^{cm} < 1.7 \text{ MeV}$

Next-to-leading order coefficients

• No knowledge about next to leading order coefficients $b'_{EJ,CJ}$ with J = 1, 2

 \rightarrow Assuming $b'_{EJ,CJ} \approx 1$ and "+" sign

- No knowledge about C0 multipole and $b'_{C0} \cdot a'_{C0}$ \rightarrow Assuming $b'_{C0} \approx 1$ and "+" sign, **Case A** $a'_{C0} = a'_{E2}$ and **Case B** $a'_{C0} = 0.5a'_{E2}$
- For $E_{\alpha}^{cm} < 1.7$ MeV only Coulomb phase contributes:

$$\delta_{Cl} - \delta_{C0} = \delta_{El} - \delta_{E0} = \sum_{n=1}^{l} \arctan \frac{\eta}{l}$$

Number of events after 100 days

- Events were sorted in:
- \rightarrow four 1.91 MeV wide q-bins
- \rightarrow ten 100 keV wide E_{α}^{cm} -bins
- \rightarrow six 10° wide θ_{α}^{cm} -bins
- E_e = 114 MeV, θ_e =15°,
- Case A and Case B
- Now we can compute statistical uncertainties
- Horizontal placement of data points according to:

G. D. Lafferty and T. R. Wyatt, Nucl. Instrum. Methods Phys. Res. A 355, 541 (1995).

- E_e = 114 MeV, θ_e =15°, Case A and Case B
- Three fitting parameters a'_{E1} , a'_{E2} and a'_{C0} -> S_{E1} , S_{E2} and S_{aC0} non-astrophysical factor

•
$$E_e = 114$$
 MeV, $\theta_e = 15^\circ$, Case A

- E_e = 114 MeV, θ_e =15°, Case A
- Compared to most accurate measurements, statistical uncertainties of S_{E1} and S_{E2} are improved at least by factors 5.6 and 23.9, respectively

- E_e = 50 MeV, θ_e =15°, Case A, 10 mA for 100 Days
- E_e = 114 MeV, θ_e =15°, Case A, 10 mA for 100 Days

Conclusion

- Using a simple model, possibilities of new ERL accelerators and the gas-jet target, calculations of ${}^{16}O(e,e'\alpha){}^{12}C$ reaction rate in range 0.7 < E_{α}^{cm} < 1.7 MeV and showed that one would be able to determine ${}^{12}C(\alpha, \gamma){}^{16}O$ reaction rate with unprecedented statistical precision
- At $E_e = 114$ MeV and spectrometer with 10% E'_e acceptance the full range 0. < E^{cm}_{α} < 10.2 MeV is accessible from one experiment
- Shorter run at higher E_{α}^{cm} to test the particle identification (α from different Oxygen isotopes), systematics and all assumptions (next-to-leading order coefficients, q_0)
- For more details: I. F., W. T. Donnelly and R. G. Milner, Phys. Rev. C 100, (2019) 025804

Currently supported by Croatian Science Foundation under the project IP-2018-01-8570 and European Union's Horizon 2020 research and innovation program under the grant agreement 101038099.

Thank you