Electromagnetic Transition Rate Studies in ²⁸Mg

Matthew S. Martin for the TIP/TIGRESS Collaborations

Department of Physics, Simon Fraser University

February 15, 2022

Fundamental Interactions

Fundamental Interactions

WNPPC 2022

► Nuclear structure theories model strong force between nucleons

- Predict nuclear wavefunctions
- Lifetime of nuclear states

$$\frac{1}{\tau_{theory}} \propto \left| \left\langle \psi_{\text{ground}} \right| \hat{E_2} \left| \psi_{\text{excited}} \right\rangle \right|^2$$

• Allows comparision between τ_{theory} and τ_{exp}

The Nuclear Landscape

- Nuclear force is a residual of the strong interaction
 - No complete theory of nuclei
- Many theoretical approaches
 - Address various regions of the nuclear landscape
- Measurements needed to test and guide theory

ISAC at TRIUMF

Matthew S. Martin (SFU)

WNPPC 2022

Detectors

- Gamma ray detection with TIGRESS HPGe clovers
- Charged particle detection with Csl Ball
- Particle-Gamma coincidences allows for selective trigger and offline analysis
 - Essential for isolating low cross-section reactions
 - \blacktriangleright i.e. $\sim 1/1000$ reactions results in ^{28}Mg

J. Williams. PhD Thesis. Simon Fraser University (2019).

 $^{18}O(^{12}C, 2p)^{28}Mg$

▶ Beam impinges on target with energy above Coulomb barrier

SFU

 $^{18}O(^{12}C, 2p)^{28}Mg$

- Beam impinges on target with energy above Coulomb barrier
- ► Fusion occurs, forming compound nucleus

- Beam impinges on target with energy above Coulomb barrier
- Fusion occurs, forming compound nucleus
- \blacktriangleright On order of $\sim 10^{-20}$ s, particles evaporate
 - Result is excited state of residual nucleus

- Beam impinges on target with energy above Coulomb barrier
- Fusion occurs, forming compound nucleus
- \blacktriangleright On order of $\sim 10^{-20}$ s, particles evaporate
 - Result is excited state of residual nucleus
- Residual nucleus de-excites by emission of gamma ray

The Recoil Distance Method

- Charged particles detected by Csl Ball
- Gamma rays Doppler shifted if decay in flight
- Compare counts of shifted vs non-shifted gamma rays

Matthew S. Martin (SFU)

WNPPC 2022

- Nucleons are placed into single particle energy shells
- Shell model works very well near stability
- Nuclear models are parametrized using data near stability
- ► N = 20 shell closure broken far from stability

B. A. Brown, Physics 3 104 (2010).

PHYSICAL REVIEW C 100, 014322 (2019)

Structure of 28 Mg and influence of the neutron pf shell

J. Williams,^{1,*} G. C. Ball,² A. Chester,¹ T. Domingo,¹ A. B. Garnsworthy,² G. Hackman,² J. Henderson,² R. Henderson,² R. Krücken,^{2,3} Anil Kumar,⁴ K. D. Launey,⁵ J. Measures,^{2,6} O. Paetkau,² J. Park,^{2,3} G. H. Sargsyan,⁵ J. Smallcombe,² P. C. Srivastava,⁴ K. Starosta,^{1,†} C. E. Svensson,⁷ K. Whitmore,¹ and M. Williams²

- Doppler Shift Attenuation Method (DSAM) used to determine lifetimes
- Not sensitive to $au \gtrsim 1$ ps
- No precise measurement of 2⁺₁ state lifetime

• Measurement resolved discrepancy in $4^+ \rightarrow 2^+$ transition

J. Williams et al. PRC 100 014322 (2019).
 P. Fintz et al. Nucl. Phys. A 197 423 (1972).
 T.R. Fisher et al. PRC 7 1878 (1973).

Matthew S. Martin (SFU)

WNPPC 2022

SFU

- ► Measurement resolved discrepancy in 4⁺ → 2⁺ transition
- Theoretical calculations disagree on transition strengths

J. Williams et al. PRC 100 014322 (2019).
 P. Fintz et al. Nucl. Phys. A 197 423 (1972).
 T.R. Fisher et al. PRC 7 1878 (1973).

Matthew S. Martin (SFU)

SFU

- ► Measurement resolved discrepancy in 4⁺ → 2⁺ transition
- Theoretical calculations disagree on transition strengths
- ▶ NCSM agrees with $B(E2; 4^+ \rightarrow 2^+)$ measurement
- ▶ Disagrees with previous measurements of $2^+ \rightarrow 0^+$ transition

J. Williams et al. PRC 100 014322 (2019).

P. Fintz et al. Nucl. Phys. A 197 423 (1972).

T.R. Fisher et al. PRC 7 1878 (1973).

- Measurement resolved discrepancy in $4^+ \rightarrow 2^+$ transition
- Theoretical calculations disagree on transition strengths
- NCSM agrees with $B(E2; 4^+ \rightarrow 2^+)$ measurement
- Disagrees with previous measurements of $2^+ \rightarrow 0^+$ transition
- Provide different conclusions on nuclear properties

J. Williams et al. PRC 100 014322 (2019) P. Fintz et al. Nucl. Phys. A 197 423 (1972). T.R. Fisher et al. PRC 7 1878 (1973).

▶ RUN 1: Calibration of CsI Ball (May 26 \rightarrow May 29)

- ▶ RUN 1: Calibration of CsI Ball (May 26 \rightarrow May 29)
- ▶ RUN 2: DAQ Shakedown (May $31 \rightarrow$ June 3)
 - New free-flowing DAQ with no global trigger
 - Requires reconstruction of events from individual fragments

- ▶ RUN 1: Calibration of CsI Ball (May 26 \rightarrow May 29)
- ▶ RUN 2: DAQ Shakedown (May $31 \rightarrow$ June 3)
 - New free-flowing DAQ with no global trigger
 - Requires reconstruction of events from individual fragments
- ▶ RUN 3: Production Run (June $12 \rightarrow$ June 22)
 - DSAM run with lead-backed target
 - Sensitive to shorter-lived states
 - Represents the "zero-separation" measurement
 - RDM run after
 - 11 plunger distances
 - > 17 μ m through 400 μ m
 - \blacktriangleright ~16 hours per distance to build statistics

- \blacktriangleright Coincidence peak ends \lesssim 150 ns
- \blacktriangleright Second peak at \sim 450 ns
- Resolution allows observation of beam bunches

TIP-TIGRESS Timing

- Csl hits arrive before TIGRESS hits
- \blacktriangleright Two peaks at \sim 1000 ns
 - Belived to be protons vs. alphas, currently under investigation
- Gate needs to be set to include all coincident events but not overlapping events

Matthew S. Martin (SFU)

Waveform Analysis

Can fit waveforms from data

$$W(t) = C + A_F (1 - e^{-(t-t_0)/\tau_F}) e^{-(t-t_0)/\tau_{RC}} + A_S (1 - e^{-(t-t_0)/\tau_S}) e^{-(t-t_0)/\tau_{RC}}$$

- Ratio of slow-to-fast risetime amplitudes [(A_S/A_F) * 100 + 100] used for particle identification
- More precice determination of t_0

Matthew S. Martin (SFU)

Particle Identification

Calibrated Particle ID

Downstream Tigress energy (2p0a - rough - common PID gate on all TIP positions)

- ▶ Able to isolate ²⁸Mg using online PID gates
- Can see separation of shifted-to-stopped peaks
 - Blue: Upstream
 - Green: Corona
 - Red: Downstream

Matthew S. Martin (SFU)

WNPPC 2022

Acknowledgements

Thank you to all those who helped with the experiment

M. S. Martin¹, A. B. Garnsworthy², C. J. Griffin², G. Hackman²,
G. Leckenby^{2,3}, J. Liang^{2,4}, R. Lubna², C. R. Natzke^{2,5}, C. Pearson²,
A. Redey⁶, T. S. H. Schilbach¹, K. Starosta⁷, S. Upadhyayula²,
K. van Wieren⁸, V. Vedia², J. Williams², A. Woinoski¹, F. Wu⁷, and
D. Yates^{2,3}

¹ Department of Physics, Simon Fraser University

- ² TRIUMF
- ³ Department of Physics and Astronomy, University of British Columbia
- ⁴ Department of Physics and Astronomy, Saint Mary's University
- ⁵ Department of Physics, Colorado School of Mines
- ⁶ School of Engineering Science, Simon Fraser University
- ⁷ Department of Chemistry, Simon Fraser University
- ⁸ Science Technical Centre, Simon Fraser University

SFU

- Electromagnetic operators can be calculated analytically
- Transition rates are can be experimentally measured
- ► Comparison of rates leads to information about nuclear wavefunctions

$$\lambda(\sigma L; I_i \to I_f) = \frac{8\pi\alpha c}{e^2} \frac{L+1}{L\left[(2L+1)!\,!\,\right]^2} \left(\frac{E}{\hbar c}\right)^{2L+1} B(\sigma L; I_i \to I_f)$$
(1)
$$B(\sigma L; I_i \to I_f) = \frac{\left|\langle I_f \parallel \mathfrak{M}(\sigma L) \parallel I_i \rangle\right|^2}{2I_i + 1}$$
(2)

- L is the angular momentum of the photon
- *E* is energy of the photon
- ▶ $B(\sigma L; I_i \rightarrow I_f)$ is the reduced transition probability
- ▶ $\mathfrak{M}(\sigma L)$ is an electric or magnetic multipole operator

- Charged particles detected by Csl Ball
- Residual nucleus gradually slowed in backing
- Doppler shift dependent on how far into backing residual nucleus gets before emitting gamma ray
- ► Determine lifetime using statistical methods comparing lineshape from experimental data to simulations using GEANT4

GEANT4 Simulations

SFU

- Monte Carlo simulation framework
- Simulate reactions and geometries
- TIGRESS and Csl ball constructed
- Simulate and optimize experimental parameters
- Data analysis

J. Williams. PhD Thesis. Simon Fraser University (2019).

- With newly installed GRIFFIN DAQ at TIGRESS, there is no global trigger number
 - Fragments are written with individual timestamps
 - Events need to be reconstructed from individual fragments
- Fragments come from various detector types
 - Csl Ball
 - TIGRESS
 - Central contacts
 - Individual segments
 - BGO suppressors
- Fragment timing is dependent on timing type
 - ▶ Time coincidence gates must be applied separately

Waveform Analysis

- ▶ First step in analysis is proper PID
 - ▶ Requires determination of particle type

- Alphas (left) and protons (right) result in different waveforms
- Least-squares fit applied to each waveform
 - Ratio of slow-to-fast risetime amplitude used to determine particle type