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Why we Need a Time Projection Chamber

• Experimental goal: study Compton scattering on helium-3 and helium-4

to measure electric and magnetic polarizabilities of the neutron [1]

• Active target determines energy, angle of recoil particle [2]

γ: Incident beam energy (known)
3He: Target at rest

γ′: Measured in photon calorimeter
3He′: Not yet detected...

Time Projection Chamber + photon calorimeters −→ overdetermined

kinematics!
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Working Principle of a TPC

• Kinetic energy of target recoil ionizes gas

• Electrons drift through E⃗ field in active volume and are detected by

anode

• Target recoil energy and track can be reconstructed from anode readout
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Implementation

in Geant4

1 // main constructor function

2 G4VPhysicalVolume*

A2TPC:: Construct(G4LogicalVolume*

MotherLogical , G4double Z0) {

3 fMotherLogic=MotherLogical;

4 G4cout << "A2TPC :: Construct ()␣

Building␣the␣TPC." <<G4endl;

5

6 ReadParameters("data/TPC.dat");

7 DefineMaterials ();

8 MakeVessel ();

9 MakeAnodeCathode ();

10 MakeSensitiveDetector ();

11 MakeElectricField ();

12 PlaceParts ();

13

14 fMyPhysi = new G4PVPlacement (0,

G4ThreeVector (0,0,Z0) ,

fMyLogic , "TPC",

fMotherLogic , false , 1,

fIsOverlapVol);

15 return fMyPhysi;

16 }



# Time Projection Chamber Parameters

# ACP 20 May 2021

#

# Vessel dimensions in mm

# length of main cell

# radius of main cell

# length of conical part of main cell

# wall thickness

# extension length

# extension inner radius

# Be window thickness:

TPC-Dim: 311.0 100.0 1.5 50.0 200.0 25.0 0.5

#

# Anode specifications in mm

# Thickness of G-10 layer

# Thickness of Cu layer

# Distance of anode from cell end

# Angular sections

Anode-Dim: 1.5 0.02 25 16

# # Cathode specifications in mm

# Thickness of steel layer

# Thickness of aluminum layer

# Distance to cathode from cell end

Cathode-Dim: 1.0 0.01 25

#

# Run Mode 0=no, 1=yes

# Check overlaps

Run-Mode: 0 1
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Simulation Output

ntpc: Number of anode segments hit

itpc: ID of anode sections hit

qtpc: Charge deposited in hit

ttpc: Time of hit



Initial Simulated Data

Initial data were inconsistent with functionality of a TPC?!
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Initial Simulated Data

→ Most hits deposit positive charge?!

→ Most hits are at exactly time zero?!

→ Few hits recorded anywhere in the anode?!



The Problem

Following tracking information for electrons shows that they are not being

drifted through the electric field.

**************************************************************

G4Track Information: Particle = e-, Track ID = 18, Parent ID = 1

**************************************************************

Step X Y Z KineE dEStep TrakLeng

0 0 nm 0 nm 544 nm 57.3 eV 0 eV 0 fm

1 -3.69 nm 4.13 nm 545 nm 0 eV 57.3 eV 7.52 nm

2 -3.69 nm 4.13 nm 545 nm 0 eV 0 eV 7.52 nm
**************************************************************



Electron Drift

Geant4 “low energy” range [4] Drift electron energies

100 eV - 1GeV <1 eV

• Custom definition of electron drift in G4FastSimulation [5] A2DriftModel

• Interface this with the rest of the A2Geant4 program

Simulate in Magboltz [6]: Implement in Geant4 [7]:

Drift velocity −→ Travel time of e−

Diffusion coeffients −→ Final position of e−



1 class A2DriftModel : public G4VFastSimulationModel {

2 public:

3 A2DriftModel(G4String , G4Region*, A2Target*,A2SD*);

4 ~A2DriftModel ();

5 virtual G4bool IsApplicable(const

G4ParticleDefinition &); // return true for e-

6 virtual G4bool ModelTrigger(const G4FastTrack &);

// trigger if particle energy is below 1 keV

7 virtual void DoIt(const G4FastTrack&,

G4FastStep &); // pass control of particle to

the model

8 //I did NOT name this function , the name comes

from the base class

9 protected:

10 virtual void Transport (...); // drift electron in

field

11 void ProcessHit (...); // create hit in sensitive

detector

12 };



Improved Simulated Data
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Improved Simulated Data

→ Large amount of negative charge deposited in TPC

→ Realistic time distribution

→ Many different anode sections hit



Event
Reconstruction

1. Recoil energy

2. Recoil polar angle

→ Apply to Compton

scattering
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Event
Reconstruction

1. Recoil energy

2. Recoil polar angle

→ Apply to Compton

scattering
tanθ =

∆x
vdrift∆t



Event
Reconstruction

1. Recoil energy

2. Recoil polar angle

→ Apply to Compton

scattering



Energy: Compton Scattering 100 MeV



Angle: Compton Scattering 100 MeV



A Kinematic Challenge

• Low energy + high pressure → short tracks

• Energy-angle relation → anode projection even shorter

• Beam width ≈ projection length → σ(x) = x

Possible solutions:

Lower pressure: longer tracks ⇐⇒ lower event rate

New anode design?
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Summary and Outlook

• TPC as active target gives good reconstruction of energy

→ Still the best option for the experiment

• Experimental kinematics limit feasibility of angular reconstruction

• Use Geant4 simulation and reconstruction framework to find solutions

→ Optimize pressure, anode design

Compton scattering on helium-3 in the Time Projection Chamber

= measurement of neutron polarizabilties!
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EXTRA SLIDES



Parameters Used

• Dimensions from

schematics by Evgeny

Maev (PNPI)

• Helium-3 or Helium-4

• Customizable gas pressure

(20-25 bar)

• Uniform 2 kV/cm electric

field

• Walls 8 mm aluminum





Definition of Electron Drift

Gaussians based on work by Fabian Metzger.

Position:

µx = x0, µy = y0

σx = σy = D̃T

√
|z0 − zanode |

• Mean is initial (x,y) position of simulated electron

• Standard deviation depends on transverse diffusion coefficient and

distance to anode

Time:

µt =
|z0 − zanode |

vdrift

σt =
D̃L

vdrift

√
|z0 − zanode |

• Mean is distance to anode divided by drift velocity

• Standard deviation depends on lateral diffusion coefficient, drift velocity,

and distance to anode
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Tracks and Anode Projections



Suggested Anode Design

• Inner circle entirely encompasses

the beam

• No particle track extends beyond

the outer radius

• The majority of Compton

scattering events cause hits in the

ring and at least one outer section



Experimenting with Angular Reconstruction



Optimizing Pressure


