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QUANTUM FIELD THEORY

o Feynman rules
i
propagator P =i
external leg p P p

—_— > / ’ vertex lg—>
— > I

i
k2 —m3+i¢

Figure 1: The one-loop self-energy Feynman diagram with scalar fields.
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THERMAL FIELD THEORY

The general density matrix
p(B) = e ¥,
The Partition function
Z(B) =Trp(B) = Tre~"™
The expectation value of an observable A

(A)s = Z71(8) T (p(8) A) = T 24D

The vacuum expectation value

lim Tr (pA) = (0] A 0)

'F. Gelis, Quantum Field Theory: From Basics to Modern Topics. Cambridge
University Press, 2019.
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MATSUBARA FORMALISM

o For free bosonic scalar fields, 2

1

0 _
g ((Un;p) - w%+p2+m2

with the Matsubara frequency wy, = 2n7T being 7 dependent.
Here we have 7 = — W|th kg =1.

¢ The temporal ko mtegral is therefore discretized,

R

2F. Gelis, Quantum Field Theory: From Basics to Modern Topics. Cambridge
University Press, 2019.



Introduction
0000e

THERMAL FIELD THEORY

Figure 2: The one-loop self-energy Feynman diagram with scalar fields.
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OBJECT

The object we are looking for is
Iy = Iy — Tlp.
And the biggest difficulties we are facing from I is

o the ultra-violet divergence in d = 4 spacetime (1 temporal
dimension and 3 spatial dimensions) for both 11+ and Il;

Iy 0)1/d4k (N 1
OWPPI=0 ) e m?  (k+pR+m?

< the application to the numerical calculation tool.
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THE CUT-OFF METHOD

1y ~ Zn 32"1?7 \n| >1
U
An upper limit nqax provides a suitable regulation method to regulate
both divergent I1+ and Tly.
4

I1; hopefully will be convergent as ,,c — oo and ko may = 22 — oo

4

the cut-off method
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THE ‘REVERSE’ WICK ROTATION

o pySecDec: a program designed for numerical calculation of
dimensionally regulated loop integrals. 3

1
Or(p, Po) 28

d3k 1 1
Z 2 A 2nm 2 2
(B2 + K +m2 (BFP+p5)* + (k+p)+m

n=-—oo

This is the part we can use pySecDec to numerically evaluate.

3“pysecdec: A toolbox for the numerical evaluation of multi-scale integrals,” arXiv:1703.09692.
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THE ‘REVERSE’ WICK ROTATION

/ dPk 1 o 1
Qm)P K2+ A% (k+p)? + A2

o II expression is in Euclidean space, while pySecDec works in
Minkowski space.

o pySecDec will calculate momentum in spacetime dimension
while we only need to solve integral for spatial dimensions.
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THE ‘REVERSE’ WICK ROTATION

Define momentum kI’
k' = iky, dk' = idky, (Ki')* = (ik)? = -k}
Define Minkowski spacetime momentum k" = (k{', k2, ks, ...kp)
R (1)

Now we have an applicable form of T for pySecDec calculation

d3k"’ 1 1
(p Po 26 Z / km X (km_|_pm)2_A§7

n=

where p (pl,p27p3), p1111 = ip1, klm =ik, A% = m12 + w% + IC and
A5 = m5 + (p§ + wa)? + iC.
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THE SUBTRACTION II; = [T — I,

I, =11+ — Il
1 1 [ dk§
= ﬁ Z IT(WM) — E / 7; Io(kg)
n=—o00
1 % I7(wn) B M1 2w (n+1)/ % L)
- 0
2 N=—MWmax B N=—HNmax 27T)’l/ﬁ 271-
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THE SUBTRACTION II; = [T — I,

0.08 -

* Zero Temperature
Finite Temperature (8 = 0.3)
Finite Tempearture Correction(Finite-Zero)

L L L L L L
50 100 150 200 250 300

max n

Figure 3: The numerical calculation results from pySecDec of zero-temperature
correlation function IIj (blue), finite-temperature correlation function I+ (yellow) and
finite-temperature correction I1; (green). The parameter values are

my=1.1,m =2,p5 = %’76 = 0.3, p% = 1 and maximum || up to 300.
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CONVERGENCE REGARDING DIFFERENT (3 VALUES

percantage differnce of n" and (n+1)t terms
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Figure 4: The percentage difference of every two adjacent terms in the summation of
IL;. The 8 values are shown in the legend and maximum || up to 100.
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Figure 5: The effects of the external momentum p

one-loop self-energy topology
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RELATIONSHIP WITH RESPECT TO TEMPERATURE 7 (d = 4)
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Figure 6: The plot of II; with respect to 3 (left) and 1/ (right) respectively
for d = 4 spacetime. The slope in the right plot is approximately 0.00302586.
The intercept of the right plot is approximately 0.0314978 (with parameters
m =11,m =12,p=(7,8,9,6), |n| = A = 100).



Numerical Results
[eYoTeY Yol

RELATIONSHIP WITH RESPECT TO TEMPERATURE 7 (d = 4)
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Figure 7: The plot shows the II; behavior at small temperature. The
finite-temperature correction II; goes to zero as temperature goes to zero.

The parameters used are the same as in Fig. 6.
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OTHER TOPOLOGIES
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Figure 8: On the RHS is the log-log plot for the TI; vs T relation. The slope

on the right plot is approximately 1.99946.
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CONCLUSIONS

o We developed a technique called ‘reverse’ Wick rotation so that
we can apply I1+ to pySecDec for numerical evaluation;

o The cut-off method was chosen to regularize the divergence in
both II+ and Ily;

o Finally we successfully calculated I1; for one-loop self-energy
topology under finite temperature in d = 4 spacetime.
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FUTURE DIRECTIONS

o More complicated topologies can be numerically calculated;

o Alternative methodology is under development to manage the
divergences from analytical approach to compare with the cut-off
method.
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Thank you!
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DIMENSION CANCELLATION

Noodk 1/p? 1/p?
HO(PaPO) = 7/ X
2 2m)% (R m? (k+p)* | my?
) (erm) (S +)

p p?

A2 a: 1 1
:2(27r)4/d<p)k2 P R
(]) +u (s+1) +%
Since we are using the particle physics convention of 1 = ¢ = 1, both
particle masses and momenta have the dimensions of energy. All the
expressions in brackets are dimensionless. So technically, what only
matters for numerical benchmarking are the ratios ”;%f and %2;



PYSECDEC BENCHMARKING FOR ZERO-TEMPERATURE LOOP

INTEGRATIONS

o pySecDec: a program designed for numerical calculation of
dimensionally regulated loop integrals.
< One-loop self-energy topology integral (TBI).

1 d?k
TBI [d, P27 {{v1,m}, {1, mz}}] = 7/ (k2 — my2][(k — q)z — my?]»

™

(4r)? | 4m
F[2—1/1-5—6}]?[2—V2+6]F[l/1+1/2—2—6]
T[T T 4—uv — v+ 2

. 2 €
TBI [4 + 2¢, 4%, {1, 0},{12,0} | = — [ ”7] (P




TBI MASSLESS INTEGRAL (m; =my, =0GeV, 1y =1, = 1)
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TBI MASSIVE INTEGRAL (1, = mpy = 1.27 GeV, 1, = 1n, = 1)
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TBI MASSIVE INTEGRAL (17, = 1.27GeV, mp; = 0,14 = 15
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CUTTING RULES

« Cutting Rules(Cutkosky rules 4): generally used to find the
imaginary part of a Feynman diagram.

p1 p3

¥3

m A ¥ym

A3

p2 p4

Figure 9: Four-point one-loop function topology with same internal masses

4M. E. Peskin, An introduction to quantum field theory. CRC press, 2018.



CUTTING RULES: PYSECDEC DATA FOR FOUR-POINT FUNCTION

WITH m = my, = 4.18 GeV

Im[e?]
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Figure 10: Above diagrams show the * coefficient for the four-point

one-loop Feynman integral with same masses (m = m;, = 4.18 GeV) along

with an expanded diagram on the right hand side. The imaginary part

remains zero until * 2 26.21 GeV~>.



CUTTING RULES: THRESHOLD ANALYSIS

2

2 Im

q2

» symmetric kinematics, and with py = p1 + p2 + ps,
P=m=ri=q =-3pip
+ As all the internal lines have the same mass m,

3
q >§m2.

me = % x (4.18 GeV)? ~ 26.209 GeV>.

N W
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i3 1 1
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where m’ 2’;3”
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5M. Laine and A. Vuorinen, Basics of Thermal Field Theory. Springer International
Publishing, 2016.




LARGE n BEHAVIOR
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Figure 6:
R The pySecDec-
e Resus computed II terms
o Iy & W are
analyzed by calcu-
lating the difference
0001 IIr — a, as a
function of n. The
finite-temperature
terms  were cal-
culated with the
parameter values of
R my = mp = 1.1,pg =
H,B=03p*=5
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PROOF OF CONVERGENCE

Define
Cn = An - An+17

where A, represents individual terms from the summation in II;.

_ I (wp) . /2ﬂ(n+1)/ﬁ % Io(kg).
2n/B 27



PROOF OF CONVERGENCE
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Figure 11: The plot between In(C,) and In(n) shows a linear relation with a
slope —y ~ —3.57 corresponding to C, ~ _%. The data in the figure was
generated with the same parameters as in Fig. 3.



PROOF OF CONVERGENCE

Cp = % = In(C,) ~ —yIn(n) + In(a),
where In(a) is defined as the intercept in Fig. 11. Thus we find

a
C,=4A,—A ~ —
n n n+1 1’['77

with y ~ 3.57 > 1.



METHODOLOGY BENCHMARK FOR d = 3 SPACETIME

3-Dimensional Finite—-Temperature Correction Numerical Results
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RELATIONSHIP WITH RESPECT TO EXTERNAL MOMENTA (d = 3)

Figure 12: The effects of the external momentum onthe d = 3
finite-temperature correction II; (Eqg. (1)) of the one-loop self-energy topology
(with same parameter values as in Fig. ??).



RELATIONSHIP WITH RESPECT TO TEMPERATURE 7 (d = 3)

Figure 13: The plot of the finite-temperature correction II; as a function of
(left) and 1/ (right) at d = 3 spacetime. The slope on the right plot is
approximately 0.00130617. The parameters used in the calculation are

m =11,m =1.2,p, = (7,8,9,0).



CONVERGENCE REGARDING DIFFERENT 5 VALUES
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Figure 14: The numerical calculation results from pySecDec of finite-temperature
correction IIs. The 3 values are shown in the legend and maximum || up to 100.



THE CONVERGENCE OF II;

2n(n+1)/8 g1E
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2 e n

Define A,, = M —
/B 2
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Figure 15: The plot between In(A,) and In(n) shows a linear relation with a slope

—v ~ —2.80 corresponding to A, ~ %



MATSUBARA FORMALISM

o The density operator

ti—if
e P = e PHoY(t; — iB,t;) = e P Texp [1/ d4x£1(¢m(x))]

ki

where U is the time evolution operator.

o The contour is then C = [t;, +00] U [+00, ;] U [t;, t; — iB].

ti

Im(t)

ti-ip

Re(t)



MATSUBARA FORMALISM

o The quantities that describe the thermodynamics of a system in
thermal equilibrium are time independent.

ti =0

Im(t)

Re(t)

Figure 16: Simplified contour C of thermal time (taking initial thermal time

— 0).
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