Search for Vector-Like Leptons in multi-lepton final states with the ATLAS detector

Callum McCracken

UBC / TRIUMF

15 February 2022

Background: Leptons in the Standard Model

- $\blacksquare SM = best-tested theory to date$
- Lepton: 1/2-integer spin, EM/Weak interactions
- **•** Three flavours of lepton: e, μ, τ
- SM leptons are chiral (left- & right-handed components behave differently)
- Flavours identical except for mass:
 "Lepton Flavour Universality" (LFU)
- LFU Violation (LFUV): flavours not identical
- SM is very useful, but has problems: gravity, dark matter, ..., and the hierarchy problem

Standard Model of Elementary Particles

Image Source

Motivation #1: The Hierarchy Problem

- Hierarchy Problem: The Higgs mass "should" diverge due to loop corrections, but it doesn't...Why?
- Maybe supersymmetry or extra dimensions, no evidence yet...
- Maybe something else helps cancel those loops?

Image Source

Vector-Like Quarks

- Composite Higgs Models could solve hierarchy, need more quarks for those
- Chiral 4th generation quarks are basically ruled out: < 600 GeV are excluded, anything higher would increase the Higgs cross-section by 10x
- "Vector-Like" = non-chiral quarks are one possible solution
- Vector-Like Leptons (VLLs) have been proposed as a similar solution

(Remember: VLL = non-chiral lepton)

 $\ensuremath{\textbf{Q}}\xspace$ WLLs are one possible model, why study them vs. SUSY/VLQs?

A1: Some recent LFUV data could be explained by VLLs [2]

A2: There's lots of VLL parameter space that hasn't been explored (vs. say SUSY)

LHCb [1]: 3σ (+ more if combined) anomaly in *B* decays,

$$R(K) = \frac{B \to K\mu^+\mu^-}{B \to Ke^+e^-}$$

Muon g - 2 [3]:

- 4.2 σ anomaly in magnetic moment (a_{μ})
- suggests different couplings of e and μ to photons

Other hints [4]: (irrelevant for VLLs) Cabbibo Angle Anomaly (3σ) , $\tau \rightarrow \mu\nu\nu$ (2σ) , $b \rightarrow c\tau\nu$ (3σ) , $pp \rightarrow e^+e^ (3\sigma)$

Image Sources: [1, 3]

How Can VLLs Explain The Data?

- a_{μ} : different magnetic moment for μ vs. e
 - To measure that moment, they used EM interactions
 - Maybe new physics in the process $\mu \rightarrow \gamma + \mu!$
 - Could be like top diagram, with $\chi = VLL$

R(K): similar idea, but $b \rightarrow s\mu^+\mu^-$ vs. $b \rightarrow se^+e^-$

- Also requires Z', a heavier Z
- Like bottom diagram, with E = VLL

ATLAS Intro

- LHC: Large Hadron Collider
 - ► Large (27 km long)
 - Collides hadrons (protons)
 - ► √s = 13 TeV
- ATLAS:
 - General-Purpose
 - Detects leptons and photons well
 - Over 200M readout channels
 - ▶ Using Run 2 dataset here (2015-2018), *L* = 139 fb⁻¹

Image Sources: 1, 2, 3

Callum McCracken

Why Use ATLAS for a VLL Search?

- VLLs haven't been found yet, may have high mass
- LHC is on the high energy frontier, may have ability to produce VLLs directly
- ATLAS: LHC detector, so good tool for the job (hopefully)
- VLL models often decay to multi-lepton final states, and an ATLAS multi-lepton general analysis is being carried out now

Signal and Background Processes

Must be able to separate VLL signal from noise.

We have \geq 3-lepton final states, so dominant backgrounds are VV, VH, $t\bar{t} + X$, ...

Example VLL processes:

Example background processes with ZZ:

Background will wash out signal, need to make event selections to deal with that.

Callum McCracken

Selections To Improve Signal Strength

We want to:

- Improve signal-to-noise ratio
- Avoid reducing number of signal events too much, i.e. keep signal efficiency (signal/background) high

• Enhance sensitivity for discovery
$$\propto \frac{\text{signal}}{\sqrt{\text{background}}}$$

The next few plots:

- Sum of p_{τ} of all leptons, and p_{τ} of the leading lepton
- $(p_{\tau} = \text{``transverse'' momentum, i.e. not in the direction of the beam)}$
- Subsequent plots include previous selections too
- Plots are normalized using $N_{\text{events}} = L * \sigma (L = 139 \,\text{fb}^{-1})$, for comparison with data

Selections: No Taus (yet)

- For simplicity / comparison with another search
- Will add them later

Selections: 4 Leptons (also looked at 3)

- VLLs decay (a lot of the time) into 4-lepton final states
- Background processes tend to have other numbers as well, cut those out

Selections: Leptons Must be Well-Isolated

- Well-isolated = no nearby "junk" in detector
- Cleans up events for later

Selections: All Leptons Must Have $p_{\tau} > 25 \text{ GeV}$

- Signals are more noticeable now
- Work in progress, this will likely get better!

Signal / Control Regions

- Signal Region = VLL signal expected
- Control Region = no signal expected, used to constrain backgrounds
- Possible CR (in plot): 4 leptons, ZZ
- Regions need to be formally defined by the group before looking at data

What's Next?

Typical ATLAS analysis workflow:

- Define/optimize SR&CR, blind SR
- Use CR to constrain backgrounds
- Create framework to detect VLLs, test on simulated SR
- Unblind SR and use framework
- Ideally discover VLLs! Exclude some parameter space if no discovery

Example exclusion plot for a theoretical VLL model with a Z', at the HL-LHC. Their VLL is "*E*."

Colours represent exclusion limits $(p_{excl} < 0.05)$ for the branching ratio $BR(E \rightarrow Z'\mu)$.

White lines show the projected 5σ exclusion regions $(p_{\rm disc} < 2.867 \times 10^{-7})$ for each BR.

Thanks for listening!

Also many thanks to the ATLAS Multi-Lepton Analysis Team for guidance while doing this work and making this talk!

LHCb collaboration.

Test of lepton universality in beauty-quark decays.

- Andreas Crivellin. WIR SCHAFFEN WISSEN – HEUTE FÜR MORGEN. page 54.
- Muon g 2 Collaboration.
 Measurement of the positive muon anomalous magnetic moment to 0.46 ppm. 126(14):141801.
 Publisher: American Physical Society.
- Aurelio Juste.

Implications of anomalies for the exotics program.

Junichiro Kawamura and Stuart Raby. \$\ge 4 \mu\$ signal from a vector-like lepton decaying to a muon-philic \$z^\prime\$ boson at the LHC. 104(3):035007.

Matthew D. Schwartz. TASI lectures on collider physics.