

## EIC-ECCE Detector Design Optimization with Al

Cristiano Fanelli 1,2, Karthik Suresh 3, Zisis Papandreou 3

<sup>1</sup> Massachusetts Institute of Technology, <sup>2</sup> The Institute for Artificial Intelligence and Fundamental Interactions, <sup>3</sup> University of Regina







University Faculty of Regina Sci Science





#### Outline

- EIC- Electron Ion Collider
- "Generic" Detector system for EIC
- Inner tracking detector in ECCE
- Multi Objective Optimisation (MOO) and Results
- Summary and next steps









59th Winter Nuclear & Particle Physics Virtual Conference

#### Electron-Ion Collider (EIC)

- To be built at BNL (<u>Brookhaven National Laboratory</u>) using existing infrastructure of RHIC.
- Physics Goal: Structure and dynamics of matter at high luminosity and energy using polarised beams. Wide range of nuclei [arXiv:1212.1701]
- The machine will be capable to perform
  - High luminosity measurements (10<sup>33</sup> cm<sup>-2</sup> s<sup>-1</sup> 10<sup>34</sup> cm<sup>-2</sup> s<sup>-1</sup>)
  - Flexible center-of-mass energy range.  $\sqrt{s} = \sqrt{4E_e E_p}$  (20-140 GeV)
  - Deliver highly polarised electron and proton/ light ion
  - $\circ$  Almost a  $4\pi$  detector to measure particles scattering in all directions and at wide range of energies



#### Al at EIC https://eic.ai

# DWG's Technology Selection Baseline Design Alternate Configuration(s) CWG's Simulation Campaign Support Al Optimization

- Detector Design optimisation, challenging due to dimensionality & constraints
- Al deployed at almost all stages of the project
- AI4EIC workshop





## Start with inner tracker [arXiv:2102.08337] $\pi$ tracks **ALICE Si Vertex tracker** Fine grained implementation Implementation of Support Structures

- The performance of tracker characterised by detector's response (eg. resolution, reconstruction efficiency for the tracks). Often more than one metric.
- Geometric/Design parameters have significant impact in the performance of the tracker.
- Optimisation is a continuous and iterative process. Each time add more subsystems when available. 11 parameters in this example.

| $B_1$ $B_2$ $B_3$ $B_4$ | $B_5$ $B_6$ | B <sub>7</sub> B <sub>8</sub> | $B_9$ $B$ | $B_{10}$ $B_M$ |
|-------------------------|-------------|-------------------------------|-----------|----------------|
|-------------------------|-------------|-------------------------------|-----------|----------------|

 Efficient parameterisation of the detector to reduce dimensionality of design parameters.

with realistic material Budgets.

 Encode different geometric and mechanical constraints; ITS3 (ITS2) constrained due to fixed strip length



#### Multi Objective Optimization

- The performance of tracker determined by multiple "objectives", e.g., weighted avg momentum resolution, θ resolution, KF efficiency, projected θ resolution at PID location. Objectives could be conflicting.
- In the figure,  $f_1$  and  $f_2$  are two objectives. Points corresponds to one set of design parameters. The objectives are to be minimised.
- In solving such problems, with or without constraints, yields trade-off optimal solutions, popularly known as Pareto-optimal solutions. Locus of points in Objective Space which are non-dominating to one another.
- Due to multiplicity in solutions, Evolutionary Algorithm (EA) is preferred since it uses a population based approach to converge.
- Developed a pipeline for optimisation with pymoo (MOGA) to optimise and "Fun4All" (Geant4 based framework) to simulate and analyse the detector response.



- N\_vars (Design params M) ≥ 11
- N\_gen (calls) = 200
- N pop = 100
- Offspring ≥ 30

#### The Summary of MOGA Pipeline



**Fun4All Geant4 Simulations** 

Yields Performance of the design.
Objectives that decide evolution

#### **Optimal Detector Design Solutions**

1.10 0.80



Ratio =

 $f_{N}(Baseline)$ 

KF Inefficiency max (0.04)



#### KF Inefficiency Improvement

- Optimal/baseline -1
- Baseline Ineff



### Phases of Optimisation



#### Tracker Optimisation timeline.

- 1: Optimisation of Barrel alone. Made technological choices,
- 2: Optimisation of Barrel+Disks. Without any support structures.
   Symmetric design
- 3. Optimisation of Barrel+Disks. With fixed support structures. Asymmetric design
- 4. Optimisation of Barrel+Disks and support structure. Asymmetric design
- 5. Full tracking system optimisation.



additional requirements

Optimisation phases



The  $\pi$ +K- invariant mass obtained from the SIDIS events with updated baseline and recent optimised projective geometry. A region of eta that is sensitive due to considerable materials for support structure was also taken in to account for this optimisation.

#### Summary

- EIC can be one of the first experiments to be designed with the support of Al
- The current tracking system in proposed by ECCE for EIC is an Al-assisted one.
- For the "first" time a framework integrating the <u>full</u> detector design using Geant4-based simulation coupled to MOO has been developed. This framework can be massively parallelized.
  - The developed framework is modular enough it can be effectively used within ECCE EIC software stack.
  - The decision making from the Pareto solutions are intentionally manual to effectively explore the feasibility of the design based on qualitative factors like cost, engineering realisation etc.
- ECCE-EIC tracker optimisation is a continuous and an iterative process. All had assisted in making technological choices for the tracker design and also had assisted in the current design of the ECCE-EIC tracker.
- Currently developing framework to include different optimisers (e.g. MOBO, MOEA.)







February 15 - 18, 2022