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IEIectron-Ion Collider (EIC)

To be built at BNL (Brookhaven National Laboratory) using
existing infrastructure of RHIC.

Physics Goal : Structure and dynamics of matter at high
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https://www.bnl.gov/ec/
https://arxiv.org/abs/1212.1701

I Al at EIC https:/eic.ai

Role of Al

e Detector Design optimisation,
challenging due to dimensionality &
constraints

e Al deployed at almost all stages of the
project

e  AI4EIC workshop

~ Physics Events

Iterative process. Each iteration
gives new baseline designs

Injection of

Design parameters

Detector Simulation

events



https://indico.bnl.gov/event/10699/
https://eic.ai
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I Start with inner tracker

[arXiv:2102.08337] o

Fine grained
implementation

Implementation of Support Structures
with realistic material Budgets.

The performance of tracker characterised by detector’s response
(eg. resolution, reconstruction efficiency for the tracks). Often
more than one metric.

Geometric/Design parameters have significant impact in the
performance of the tracker.

Optimisation is a continuous and iterative process. Each time add
more subsystems when available. 11 parameters in this example.

Efficient parameterisation of the detector to reduce
dimensionality of design parameters.

Encode different geometric and mechanical constraints; ITS3
(ITS2) constrained due to fixed strip length



https://indico.cern.ch/event/1071914/attachments/2316015/3942587/2021-09-24_DetectorSeminar-ITS3.pdf
https://arxiv.org/abs/2102.08337

I Multi Objective Optimization

e The performance of tracker determined by multiple “objectives”, e.g.,
weighted avg momentum resolution, @ resolution, KF efficiency,
projected & resolution at PID location. Objectives could be
conflicting.

o Inthe figure, f, and f, are two objectives. Points corresponds to one
set of design parameters. The objectives are to be minimised.

e In solving such problems, with or without constraints, yields trade-off
optimal solutions, popularly known as Pareto-optimal solutions. Locus
of points in Objective Space which are non-dominating to one — Pareto Front
another.

@ Optimal Solutions

e  Due to multiplicity in solutions, Evolutionary Algorithm (EA) is Dominated Solutions
preferred since it uses a population based approach to converge.

e o - o N_vars (Desi M) > 11
e Developed a pipeline for optimisation with pymoo (MOGA) to optimise . N:g,séaffs')gf 33{,""‘3 )2
and “Fun4All” (Geant4 based framework) to simulate and analyse the e N_pop=100
e  Offspring > 30

detector response.

N_Objs > 3 7



https://www.jlab.org/conferences/eicsw/EICSoftwareMeeting-Pinkenberg-Fun4All.pdf

The Summary of MOGA Pipeline

Initial population creation (N_pop)
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IOptimaI Detector Design Solutions

Convergence for New Optimisation

Inferring solutions at any
stage of optimisation
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dp/p ratio w.r.t Baseline

PWG requirement

Baseline Config 4 + FST Disks; n< 1

Optimal Solution Config 4 + FST Disks; n<1
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+ Optimal Solution Config 4 + FST Disks; n<1

~20 % improvement
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e Baseline Ineff

I KF Inefficiency Improvement e Optimalibaseline -1

Summary of KF Inefficiency of (Optimal/Baseline -1) Design
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| Phases of Optimisation

Phases of
Optimisation

Tracker Optimisation timeline.
° 1: Optimisation of Barrel alone. Made technological choices.

° 2: Optimisation of Barrel+Disks. Without any support structures.
Symmetric design

° 3. Optimisation of Barrel+Disks. With fixed support structures. Asymmetric
design

° 4. Optimisation of Barrel+Disks and support structure. Asymmetric design

° 5. Full tracking system optimisation.

-

updated configurations with any
additional requirements

Optimisation phases
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The m+K- invariant mass obtained from the SIDIS events with updated baseline and recent optimised projective
geometry. A region of eta that is sensitive due to considerable materials for support structure was also taken in
to account for this optimisation.
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e EIC can be one of the first experiments to be designed with the support of Al

e The current tracking system in proposed by ECCE for EIC is an Al-assisted one.

o For the “first” time a framework integrating the full detector design using Geant4-based simulation
coupled to MOO has been developed. This framework can be massively parallelized.

o  The developed framework is modular enough it can be effectively used within ECCE EIC software

stack.

o  The decision making from the Pareto solutions are intentionally manual to effectively explore the
feasibility of the design based on qualitative factors like cost, engineering realisation etc.

e ECCE-EIC tracker optimisation is a continuous and an iterative process. Al had assisted in making
technological choices for the tracker design and also had assisted in the current design of the ECCE-EIC

tracker.

e Currently developing framework to include different optimisers (e.g. MOBO, MOEA))
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