

Rejecting the Cosmic Ray Background in the ALPHA-g Anti-hydrogen Gravity Experiment

Gareth Smith

PhD student on behalf of the ALPHA collaboration WNPPC 2022 virtual conference February 16, 2022

Presentation overview

- 1. ALPHA-g experimental goals.
- 2. Cosmic ray background in ALPHA-g.
- 3. Time-of-Flight background rejection with the ALPHA-g *Barrel Veto* detector.
- 4. Preliminary time-of-flight data for cosmic rays and antiproton annihilations.

ALHPA-g Experimental Goals

- ALPHA-g will be the first direct precision test of the gravitational interactions of antimatter.
- Trapped antihydrogen atoms are allowed to fall in Earth's gravitational field and annihilate.
- Strength of g is determined by studying annihilation positions.

$$\overline{g} = ?$$

Particle detection and backgrounds

- Annihilation products are tracked using a time projection chamber (TPC).
- Particles are released over ~100s
 → ~10⁵ cosmic rays detected
- Cosmic ray background dwarfs signals from ~1000 potential antihydrogen atoms.
- Need an efficient background rejection method...

"Barrel Veto" detector

- A secondary detector enclosing the TPC.
- 64 bars of EJ-200 plastic scintillator, trapezoidal shape allows seamless fit like slats of a barrel.
- Light collected at both ends by arrays of silicon photomultipliers.
- Time over threshold recorded by TDC, full waveforms sampled by ADC.

Time-of-flight background rejection

Case 1: Cosmic ray **t**₂ t₁ << t₂

Case 2: H annihilation

Time-of-flight data expectation

Time-of-flight data expectation

Time-of-flight of cosmic rays

Time-of-flight of antiprotons

Background discrimination

- The Barrel Veto is able to see differences in data.
- Time-of-flight minus distance is a basic indicator of "cosmic-ness".
- Aim to use machine learning to combine time-of-flight with other features, including TPC data.
- Room for improvement in timeof-flight calibration!

Thanks for listening!

And thanks to the ALPHA collaboration, the ALPHA-Canada and TRIUMF teams, and to my supervisor Makoto Fujiwara.

Calculating time-of-flight

$$t_{top}^A = t_A + d_{top}^A/c \qquad \text{assuming light travels at constant} \\ \text{effective speed c in bar}$$

Calculating time-of-flight

$$t_{top}^{A} + t_{bot}^{A} = (t_A + d_{top}^{A}/c) + (t_A + d_{bot}^{A}/c)$$
$$= 2t_A + L/c$$
$$t_{mean}^{A} = \frac{t_{top}^{A} + t_{bot}^{A}}{2} = t_A + \frac{L}{2c}$$

Calculating time-of-flight

$$\begin{split} t^B_{mean} - t^A_{mean} &= \left(t_B + \frac{L}{2c}\right) - \left(t_A + \frac{L}{2c}\right) \\ &= t_B - t_A \\ &= \text{TOF} & \text{assuming both bars are the same length, and light travels the same effective speed in both} \end{split}$$

Calculating Z position in bar

for one end:

$$t_{top}^A = t_A + d_{top}^A/c$$

Z position is proportional to time difference between ends:

$$t_{top}^{A} - t_{bot}^{A} = \left(t_A + d_{top}^{A}/c\right) - \left(t_A + d_{bot}^{A}/c\right)$$
$$= \frac{d_{top}^{A} - d_{bot}^{A}}{c} = \frac{2z}{c}$$