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Neutrino Emission from CCSNe
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About 99% of the supernova explosion energy is emitted in the form of neutrinos.
The initial electron neutrino burst happens few seconds before the final explosion and can alert astronomers on Earth before the explosion takes place (SNEWS and SNEWS 2.0).

The complete mechanism of core-collapse supernovae explosion is not well understood and so by observing neutrinos from supernova, we can learn about several other phenomena in
physics such as black hole formation, nucleosynthesis of heavy elements, etc.

One of the ways to observe the neutrinos at supernova energy scale is through lead-based neutrino detectors such as HALO-1kT that will consist of 1000 tonnes of lead.




HALO-1kT Supernova Neutrino Detector
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vp + %P = “°Ph 4 2n - 14.1MeV

Proposed HALO-1kT is an upgrade of the HALO
supernova neutrino detector present at
SNOLAB.

Will contain approximately 1000 tonnes of lead
and therefore, will have a higher neutrino
interaction rate than HALO for supernovae.
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The v-Pb cross-sections, which will determine the number of neutrons produced in HALO-1kT by supernova

neutrinos, have not been measured.

Furthermore, for the large-scale HALO-1kT detector to be feasible we need to develop very low background He-3
counters that will be used to detect neutrons from supernova neutrinos.

A small prototype detector based on the same design and principles as HALO-1kT is proposed to study the v-Pb
cross-sections and build very low background neutron counters.
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Neutron detection efficiency ~ 53%




Mini-HALO Test Facility for Boosting HALO-1kT’s Detection
Capabilities

1. 800 lead bricks weighing approximately 10 tonnes that will
contain nine He-3 Counters.

2. 6’ thick graphite layer to serve as a neutron reflector.

3. 6" thick layer composed of HDPE and borated PE to shield
from external neutrons.

4.  Aluminum support structure to hold together all the materials o
in the detector.

5. 1”7 thick polyvinyltoluene polymer based plastic scintillators
that will serve as the muon veto system.

*  Main objective is to obtain highly accurate neutrino-
lead cross section measurements at ORNL's SNS facility
using pulsed neutrinos from muon decay at rest.

* All Background sources must be considered including
cosmic ray muons that can mimic the signals produced
by neutrinos. 4 5
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Muon Veto Simulations in Geant4

* Inorder to determine an optimized geometry
configuration of the muon veto system, a Geant4
code for the Mini-HALO has been developed.

* Muons interacting with lead are captured by lead
atoms producing neutrons and thus, can mimic the
signal that we would expect from neutrinos.

e By determining the time difference between the
muon hit and background triton being produced,
we can veto the background events.

*  Furthermore, by studying multiplicities of
background neutrons and tritons, we can also
differentiate between muon induced event and
neutrino induced event.
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Determining Detector Dead Time and Background Multiplicities

Background neutrons' muttiplicity in lead Background tritons' multiplicity in He-3 Background triton production timings in He-3
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Recall that neutron multiplicity from a neutrino event can only go up to 2 neutrons per

event; * Detector exposure to cosmic muons shows that
CC: v, +%Ph o5 Y'Bi4+n+e - 103MeV the detector dead time is approximately 10 ms.
ve + 2%Ph o 206Bi 4 9 + ¢~ - 184 MeV * Considering the cosmic muon flux at 8 m.w.e
depth, we have about a 91 percent live time to
NC: v, + Ph — 27Ph 4 n - 7.4MeV detect neutrino events.

v, + 2%Ph = 206Ph 4+ 9 — 14.1MeV




Scintillator Simulation to Determine an Optimized Geometry for the Muon Veto System

Energy deposited in the top scintillator
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The energy deposited by muons in

scintillators on each side shows that the top
scintillator has a lower average energy
deposit than the scintillators on the sides.

The muons hitting the side scintillators come

at an angle and traverse more distance than
the muons coming from the top.

Energy deposited in the right scintillator
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The number of optical photons generated
shows that the highest photon yield is for the
side scintillators that have higher average
energy deposit.

This optical photon spectra for the scintillators
will be used along with the scintillators’ surface
properties and Q.E. of PMTs to determine an
ideal placement for the PMTs around the
scintillators to collect maximum number of
photons.



Conclusions and Future Work

e The cosmic muon simulations for Mini-HALO shows that a muon takes about 0.3 ms on average to
generate a background triton and the production time can go up to 10 ms.

* Based on this, we have a detector dead time of 10 ms and so from the expected muon flux hitting Mini-
HALO, the estimated live time of the detector is about 91 percent.

* Furthermore, the neutron multiplicities for many background events can go higher than 2 neutrons and
are thus a clear indication of muon induced events that can be vetoed.

 The average energies deposited in scintillators is about 5.5 MeV by muons that hit vertically and about
12.5 MeV by muons that hit at an angle, giving a much higher optical photon count for scintillators that
are hit by muons at an angle.

e Based on this information and by including the surface properties of the scintillators and the quantum

efficiency of the PMTs in the simulation, an optimal configuration for the scintillators will be determined
that can collect the maximum number of photons generated by cosmic muons.
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Questions?




Comparing previously studied angular distribution of muons in
underground laboratories with the simulation.
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Triton multiplicity tagged from coincidence

Background triton multiplicity that can be tagged through coincidence
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Background Events vs Exposure Time

Muon induced eventis
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Neutrons Produced by Cosmic Muons in Mini-HALO

60

Neutron energy spectrum from all muons
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Neutron generating processes from all muons
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Energy Lost by Muons After Traversing 8 m.w.e

Energy lost by muons in water
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Muon Absorption in Mini-HALO
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nCapture Positions in He-3 After Muon Hit

nCapture time (ms)
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