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Introduction

Symmetry breaking can be distinguished into two types, explicit
symmetry breaking and spontaneous symmetry breaking, characterized by
whether the equations of motion fail to be invariant or the ground state
fails to be invariant.

Spontaneous symmetry breaking is a spontaneous process of symmetry
breaking, by which a physical system in a symmetric state ends up in an
asymmetric state. In particular, it can describe systems where the equations
of motion or the Lagrangian obey symmetries, but the lowest-energy
vacuum solutions do not exhibit that same symmetry.



Spontaneous Symmetry Breaking of¢4theory (non- conformal)

¢* theory- Discrete symmetry

m We begin with an analysis of spontaneous symmetry breaking in classical
field theory. Consider first the familiar ¢* theory Lagrangian,
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but with m? replaced by a negative parameter, —%:
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The minimum-energy classical configuration is a uniform field ¢(x) = ¢y,
with ¢ chosen to minimize the potential
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This potential has two minima, given by

Po =TV =Ty M

The constant v is called the vacuum expectation value of ¢.



Spontaneous Symmetry Breaking of¢4theory (non- conformal)

¢* theory- Discrete symmetry

m To interpret this theory, suppose that the system is near one of the
minima (say the positive one). Then it is convenient to define

p(x) =v+o(x),

and rewrite L in terms of o(x).
Dropping the constant term as well we obtain the Lagrangian
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NON-CONFORMAL TWO HIGGS DOUBLET MODEL (2HDM)

2HDM

m | am working on the spontaneous symmetry breaking of the
non-conformal CP-conserving 2-Higgs-Doublet Model (2HDM).

m To study this, We need to provide the loop-corrected effective potential of
for a non-vanishing temperature.

m The full potential can be expressed as

Vett = Viree + Vow + Ver + V1

where V7.e IS the tree-level potential, Vi Is the one-loop
Coleman-Weinberg (CW) potential, V1 are counter-terms, and V7 is the
thermal contribution.



NON-CONFORMAL TWO HIGGS DOUBLET MODEL (2HDM)

Tree-level potential

m In terms of the two SU(2); Higgs doublets ®; and ®,,
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m the tree-level potential of the 2HDM with a softly broken Z, symmetry,
under which the doublets transform as &y — ®4; ®> — — P, reads
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The mass parameters m2, and m2, and the couplings Aq, Ao, A3, A4 are
real parameters of the model.



NON-CONFORMAL TWO HIGGS DOUBLET MODEL (2HDM)

Tree-level potential- Minimum condition

m After EW symmetry breaking the two Higgs doublets acquire vacuum
expectation values (VEVs) w; e R (i =1,2,3).

m We have to satisfy minimum conditions

d Vtree
8(131-3 D= <q)f>

=0 aie{1,2},

with the brac.kets denoting the Higgs field values in the minimum, i.e.
(@) = (0, %) at
T = 0. This results in two equations
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NON-CONFORMAL TWO HIGGS DOUBLET MODEL (2HDM)

Theoretical constraints

m Copositivity criteria, in order to ensure that the scalar potential is
bounded from below, the following conditions from copositivity criteria
should be satisfied

A 20, Ao > 0, Az +VAA2 =0,
Az + Ag — |[A5] + v/ A1An >0

m Unitarity constraints, exact Z», symmetry my> = 0 leads the upper limits
on the masses.
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NON-CONFORMAL TWO HIGGS DOUBLET MODEL (2HDM)

One-loop CW potential- General formula

m The Coleman-Weinberg potential in the MS scheme is given by

Vew({w}) =Y 647%2( 1)25im? ({w}) {log(mfz({w})) - C;}

i

where the sum extends over the Higgs and Goldstone bosons, the
massive gauge bosons, the longitudinal photon and the fermions,
i=hHAH:G, G W=, Z 4., f(f=eu 1 uctdsb). The m,?
IS the respective eigenvalue for the particle i of the mass matrix squared
expressed through the tree-level relations in terms of w; (i = 1,2,3). The
variable s; denotes the spin of the particle, n; represents the number of
degrees of freedom.



NON-CONFORMAL TWO HIGGS DOUBLET MODEL (2HDM)

One-loop CW potential- Constants

m These are the neutral scalars ®° = h, H, A, G, the charged scalars
d* = H*, G*, the leptons /, the quarks g and the longitudinal and
transversal gauge bosons, V, = Z;, W;, v, and V5 = Z7, W+, v, with
the respective nj,

Ngo =1, nNex=2  n=4, ng=12
nw,=2, Nw; = 4, Nz, = 2, Nz, =

In the MS scheme employed here, the constants ¢; read

-

We fix the renormalisation scale u by 1 = v = 246.22 GeV.

i=W* Z
otherwise
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Counter-terms- General formula

m Introducing counterterms for each of the parameters of the tree-level
potential, the counterterm potential V-1 Is the last term of one-loop

NON-CONFORMAL TWO HIGGS DOUBLET MODEL (2HDM)

11

effective potential
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For simplicity we assume 5m122 = 0 and w3 = 0, then we have
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NON-CONFORMAL TWO HIGGS DOUBLET MODEL (2HDM)

Counter-term- Coefficients

We have five different equations (five first and second order derivatives with
respect to wq and w») and five coefficients. After solving these equations we
obtain
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GILDENER-WEINBERG MECHANISM

13

GW Mechanism- Flatness condition

m Gildener-Weinberg (GW) mechanism extends the CW mechanism to a
much larger class of gauge theories, theories in which there may be
arbitrary numbers of scalar fields with more or less arbitrary interactions.

m We choose the renormalization scale A to have a value A, at which
Vo (®) does have a nontrivial minimum on some ray ®; = nj¢

Nm:g1(ﬁjk/NfMNkN/) =0

Vo (N) on the unit sphere N;N; = 1 is zero. The one loop potential has a
form like

(P2
sV(ng) = Ap* + Bop* In (A2)

w



GILDENER-WEINBERG MECHANISM

14

GW Mechanism- Condition to have minimum
m where A and B are dimensionless constants.

_ 1 40, ﬁz
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m We see that the potential has a nontrivial stationary point, at a value of
(¢) given by

We will assume that in this case B > 0. We see immediately that the
potential at its stationary point is less than its value V(0) = 0 at the origin

V(n(g)) = 6V(n(g)) = —3B(#)* <0



CONFORMAL 2HDM
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Conformal 2HDM

m In the Weinberg-Salam model, the masses of gauge bosons and
fermions are taken to be generated by the Higgs mechanism.

m In conformal model, spontaneous symmetry breakdown does not occur
at the tree level. We have to consider the potential at least up to the
one-loop level.

m We follow the method of Gildener and Weinberg and set a condition that
Vo has a minimum value of zero on some ray np = ngp for arbitrary p in
order to make the loop expansion of V reliable.

m A necessary condition is

9 Vo

=0, k=1,2,3,4
s () =0 (k=1.2.3.4




CONFORMAL 2HDM

16

Conformal 2HDM

m [ he flatness conditions are as follows

n=(n,n,0,0),

5 VA2 2 _ VA1
n1 — (\/ﬂ+f/1;)'n2 — (m_,rl/j@)

VAA2 + A3+ A4+ A5 =0
m [he effective potential in conformal 2HDM is given by

Verr = Vo + Vew
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Summary

m Differences between conformal and non-conformal 2HDM
m Type of spontaneous symmetry breaking

B mass matrix

m effective potential

m $ angel
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