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WHY STUDY ANTIMATTER AND ANTIHYDROGEN?

Study Matter-antimatter asymmetry

Why is the universe filled only with matter?

Use antihydrogen to search for CPT violations

Antiprotons, positrons and hydrogen are well understood

A separate check on high energy studies

Study the atomic transitions

T

» Measured already to high precision in hydrogen



Antihydrogen Laser PHysics Apparatus

50 people, 8 countries

Large Canadian presence

*UBC, SFU, UofC, York, TRIUMF

At CERN (to be close to the antiprotons)



LASER COOLING

Ubiquitous in atomic physics Being able to laser cool antihydrogen is a
game-changing breakthrough in the study

Necessary for high precision of antimatter

spectroscopy
High precision anti-atom spectroscopy will

Helpful for high precision gravitational e

measurements



Breit Rabi diagram for hydrogen

LASER COOLING
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Drive a detuned optical transition
* Doppler cooling

Not many transition choices in hydrogen

" Energy level difference between ground and
first excited state is large
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121NM LASER

365nm light from laser lab

Alignment Path

THG Gas Cell
121nm VUV laser path

ALPHA Atom Trap

/-

Positrons Antiprotons

121nm
detection

Short wavelength light
is hard to produce at
high powersl!

We need it for very
long runs (>10 hours)

The ALPHA trap is NOT
in a laser lab
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Laser cooling

O Measure transition line
width with / without cooling
1S-2P
1S-2S

o Pulsed laser time-of-flight
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ANTIMATTER

Ultraviolet beam manipulates and

cools antihydrogen atoms - \
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* We see a change in the
spectrum line-width

LASER COOLING

Lineshape

—— Stack and cool
Cooling

——— No laser
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* We see a change in the
spectrum line-width

LAS ER CO 0 |_ I N G * Timing of the laser pulse and

the detector event give us a
time-of-flight

Lineshape

—— Stack and cool
Cooling

——— No laser

—— Heating

Experiment
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* We see a change in the
spectrum line-width

* Timing of the laser pulse and
LAS ER CO 0 |- I N G the detector event give us a

time-of-flight

Lineshape

* Computer simulations of laser
—— Stack and cool
Cooling cooling process qualitatively

— No laser
—— Heating match experimental data
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LASER COOLING

A set of laser cooled 243nm
4 Run A (cooling) spectroscopy runs were performed
¢ RunB (no cooling) using the same experimental
procedure as the 121nm runs

The FWHM decreased by about a
factor or four
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We estimate a change in the kinetic
energy by a factor of 16
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FUTURE STUDIES OF
ANTIHYDROGEN

Each year we get better and better at
making antihydrogen

ALPHAg

= Gravitational measurement

ALPHA3

* Laser and metrology upgrade

HAICU (Hydrogen-An’rihydrogen Infrastructure at
Canadian Universities)

= Anti-atom fountain and interferometer

Hydrogen as a proxy for antihydrogen

Exciting future for study of antihydrogen
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MAKING ANTIHYDROGEN
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Penning trap for non-neutral
plasma manipulations
Antiprotons and positrons
simultaneously held

The positrons are
evaporatively cooled, then
brough into contact with
antiprotons

Can “reliably” produce
samples >1000 antiatoms
Multiple production steps
repeated

Lifetime for antihydrogen in
the trap very long (>60 hours)



