

2022/02/15

The Scintillating Bubble Chamber (SBC) Experiment For Dark Matter and Reactor CEvNS

Dr. Pietro Giampa Research Scientist

@PietroGiampa

Overview

- 1. Concept
- 2. Experiment Design
- 3. Physics Program
- 4. Conclusions

1. Concept

Goals

Key items to consider when designing an experiment to study Dark Matter & CEvNS neutrinos:

- Good identification of interactions with the nucleus.
- Great ability to distinguish nuclear interaction (n, α , etc.) from electronic interactions (β , γ , etc.).
- Ability to operate the experiment at low energy thresholds (eV-keV).
- Good position reconstruction for interactions occurring within the experiment active volume.
- Scalable technique.

Bubble Chamber Technique

0000

 \odot

00000

 \mathbf{O}

 \odot \odot \odot

.....

PICO

Bubble Chamber Technique

 $\mathbf{0}$

00000

 \odot

00000

 $\circ \circ \circ \circ$

 \bigcirc

 \mathbf{O}

 $\bigcirc \bigcirc$

00000

 \circ

Bubble Chamber Technique

 $\mathbf{0}$

00000

 $\circ \circ \circ \circ$

 \bigcirc

.....

00000

 $\odot \odot$

00

00000

00 00 00

00 00 00

 \mathbf{O}

Energy Loss in Liquid Nobles Ionization Recombination Energy Deposition Excitation In Liquid Noble Gas Atomic Motion

Scintillating Bubble Chamber

 $\bigcirc \bigcirc \bigcirc \bigcirc$

30g of LXe, 30% Overall Light Collection Efficiency

0000

Energy Threshold In LAr

- ER's can lose ~10% energy to heat. Consistent with historic results from LAr bubble chamber, with tracks at O(10) eV in threshold.
- Thermal Fluctuations must be considered at O(10) eV in threshold.
- Target threshold of 100 eV (LAr) with controlled background levels

00000

•• ••••

2. Experiment Design

SBC Collaboration

- Eric Dahl
- Rocco Coppejans
- Zhiheng Sheng
- Aaron Brandon
- David Velasco
- Ari Sloss
- Mahebub Khatri
- Dishen Wang
- Shishir Bandapalli

Queen's

- Ken Clark
- Hector Hawley
- Patrick Hatch
- Austin De St Croix

HIVERSITY OF ALBERTA

- Marie-Cécile Piro
- Carsten Krauss
- Daniel Durnford
- Sumanta Pal
- Youngtak Ko
- Mitchel Baker .

SNOLAB

 \mathbf{O}

- Pietro Giampa ٠
- Eric Poulin

00000

0000

Chris Jackson

🛟 Fermilab

- Mike Crisler

SBC At Glance

00000

 \mathbf{O}

 \odot

0000 000

00000

00 0000

Hydraulic Piston Controls The Inner Jar Position **Compressing/Decompressing The Target Fluid**

0000

The Full Inner Assembly Is Placed Inside a Stainless-Steel Vacuum Jacket Vessel

Readout Systems

Readout Systems

Scintillation System 32 VUV4 Hamamatsu SiPMs

Readout Systems

 $\mathbf{0}$

 \bigcirc

 \odot

00000

 \mathbf{O}

ÕÕ.

 \circ

00 0000 0

Acoustic Sensors 8 Piezoelectric Transducers

3. Physics Program

Dark Matter & Reactor CEvNS

Labrador Sea

Build and commission the first detector at Fermilab.

French

Dark Matter & Reactor CEvNS

Labrador Sea

French

SBC-Fermilab - Phase 1

Build and commission the first detector at Fermilab.

SBC-SNOLAB - Phase 2

Build and install a second detector at SNOLAB for low-mass dark matter searches.

Dark Matter & Reactor CEvNS

Labrador Sea

French

SBC-Fermilab - Phase 1

Build and commission the first detector at Fermilab.

SBC-SNOLAB - Phase 2

Build and install a second detector at SNOLAB for low-mass dark matter searches.

SBC-CEvNS - Phase 3

Upgrade and install detector from (1) at a reactor site for CEvNS studies.

Dark Matter Search @ SNOLAB

Perform competitive Low-Mass WIMP search (0.7-7 GeV/c2)

- Projected sensitivity to WIMP-like Dark Matter, with an energy threshold set at 100 eV, and a background budget target of 1 event/year.
- Primary background challenge are neutrons generated in (α, n) reactions in the bulk of the detector materials. Material screen crucial for the development of this detector.

CEvNS Physics Reach

Weak-Mixing Angle

$$\frac{d\sigma}{dT} = \frac{G_F^2}{2\pi} M_N Q_w^2 \left(2 - \frac{M_N T}{E_\nu^2}\right) F^2(q^2), \qquad \qquad \mathcal{L}_{\text{eff}} = -\frac{g'^2 Q_l Q_l}{q^2 + M_\ell}$$

Dark Mediator Z'

Neutrino Magnetic Moment

5. Conclusions

Conclusions

 $\mathbf{0}$

- Introduced scintillating bubble chambers technique, with good potential for low threshold [O(100 eV)] and optimal ER rejection power [<10⁶].
- Discussed the SBC design and scientific program with two detectors optimized, respectively, for Dark Matter (SBC-SNOLAB) and neutrino (SBC-CEvNS) studies (SBC-CEvNS).
- Presented the projected sensitivity for the Dark Matter search.
 Discussed CEvNS studies, for different reactor configurations, with projected sensitivities for the weak-mixing angle, dark mediator Z' and the neutrino magnetic moment.

.....

Thank You, Merci

Backup Slides

5 kV applied on the Cu plate under the inner jar. Grounded reflector around the outer jar.

00 0000

 $\bigcirc \bigcirc$

00000 00 00 00

SiPM Testing @ Queen's U

Xe-doping in LAr

Xe Bubble Chamber at NU

0000

Demonstrated

- Liquid Xenon Bubble Chamber at 900 eV E_{th}
- Target Mass = 30 grams
- 0.3% Overall Photon Collection Efficiency

Next Program

.....

- Liquid Argon Bubble Chamber at 40 eV E_{th}
- Target Mass = 10 kg
- ER Background of 1 Bubble / Ton-Year
- •2% Overall Photon Collection Efficiency (1-photon ~ 5 keVr)

Bubble Chamber Physics

•Critical Radius:

Smallest vapor bubble that will spontaneously grow in a superheated liquid.

•Seitz Threshold:

Minimum amount of energy required to create a vapor bubble with a critical radius.

•NR/ER Response:

NR leads to Nucleation, can ER also induce Nucleation?

 $P_{l}=2.1 \text{ bara, } T_{l}=14^{\circ}\text{C}$ $P_{b}=6.2$ bara $P_{\sigma}=2\sigma/r$ $r_{c}=23.7\text{nm}$ $C_{3}F_{8}$

$$E_{T} = 4\pi r_{c}^{2} \left(\sigma - T \left(\frac{\partial \sigma}{\partial T} \right)_{\mu} \right)$$
 1.53 keV
$$+ \frac{4\pi}{3} r_{c}^{3} \rho_{b} \left(h_{b} - h_{l} \right)$$
 1.81 keV
$$- \frac{4\pi}{3} r_{c}^{3} \left(P_{b} - P_{l} \right)$$
-0.15 keV

Reactors Setup

Setup A:

~8 CEvNS/day @ 100 eV Threshold 0.25 events/day – reactor backgrounds 0.85 events/day – cosmogenic backgrounds Shielding – 0.3m Pb, 0.25m H₂O, 0.5m Polyethene , 0.2m Pb

Results B:

~1570 CEvNS/day 100 eV Threshold negligible – reactor backgrounds (30m + shielding) 180 events/day – cosmogenic backgrounds Shielding – 3m H₂O, 0.5m Polyethene

(Reactor Neutrons, γ-n Interactions, γ-n Elastic Thomason Scattering, Cosmogenic Neutrons, γ/β interactions negligible)

leutrino spectrum, (ININ: 1 MW, at 3 m)

Reactor Setup B

Considered Reactor Setups

Setup	LAr Mass [kg]	Power [MW _{th}]
Α	10	1
B	100	2000
B(1.5)	100	2000

Threshold Distance **Anti-v Flux Uncertainty** [%] **Uncertainty** [%] [m] 5.0 3 2.4 30 2.4 5.0 30 1.5 2.0

Energy Deposition in LAr

