

The DarkLight experiment at TRIUMF and the hunt for a new boson

Kate Pachal TRIUMF

Looking for dark matter with experiments

If there is some interaction with the Standard Model, and the energy scale isn't too high, \rightarrow then we could we make it in the lab

Let's build a very simple model....

What does it look like in practice?

How are we looking for dark bosons?

A real example

6

Muon g-2

(magnetic field)

"Spin" of a muon in a magnetic field **very precisely predicted**

Measured value is significantly different

The "X17"

If your new boson dislikes protons, this is workable

"Proto-phobic" limits around the X17

Here, the other extreme: X/A' couples **only** to e

Grey = excluded

Open contours = projected limits from upcoming experiments/results

Not excluded here

Low-mass di-lepton resonances

New boson could decay to dark matter, or back to e+e- pair DarkLight experiment will look for this visible process

Need energetic e- ...

The accelerator

The accelerator

Experimental apparatus

What are we actually measuring?

Three particle final state

But these are the ones we care about

spectrometer and ewith the other

Look for coincidence: e+ and e- arrive simultaneously

Bump hunt!

Look in invariant mass of e+ e- pair

collisions in neighbouring bunches

Good overlap with g-2 but only in already-excluded regions

DarkLight exclusion reach

 10^{-7}

8

17@55 1000h

10

12

running enviraccelerator!ector ...

18

16

14

 m_A / [MeV]

Can't reach the

X17 region

20

The next phase: 50 MeV single-user mode

The long-term plan: 50 MeV parallel delivery

Experimental timeline

November 2021	Install first test targets in ARIEL e-linac.
------------------	--

- -

Getting started now!

Why ARIEL?

- Low energy, high intensity beam.
 - Energy not much above the production threshold is nice because it gives an opening angle that we can easily pick up with spectrometers
 - Peak intensity of 3 mA gives us plenty of instantaneous luminosity - don't need to run forever
- Finally, because the e-linac is available! No need to share beam time with any other targets until ~phase 2, at which point parasitic running will be an option

Are we sensitive to anything else?

- Given the e+e- selection, we are sensitive only to resonances at masses relatively close to the selected target mass
- In general, lots of new physics models give resonances with this type of decay. E.g. doesn't have to be spin 1 like the target model discussed. But sensitivity != motivation: a more complete question would be "what might isn't yet excluded in this mass range that results in a dilepton final state." And I am not sure!
- What we do know: if we see something, there will be lots more study from a more complex detector required to determine what it actually is

Was in intro after wordy slide Less complete Dipole Interactions "Sketches of models" More complete Dark Matter Dark **Effective Field Theories** Photon Minimal Supersymmetric Z' boson Standard Model Simplified Dark Matter **Models** Contact Interactions Complete Higgs Dark Matter "Squarks" Portal **Models** Universal Extra Dimensions Little Higgs

Phys. Dark Universe 9-10 (2015) 8-23

Why you need high energies for small scales

We can see an object with **light** as long as the object is ~ the size of the wavelength or larger Use particle-wave Below ~10⁻⁷ m is duality: Cell: width ~10⁻⁵ m outside visible light range Can probe with p visible light Nucleus? Atom: width ~ 10^{-10} m $p = \frac{h}{10^{-10}} = 10^4 eV$ Proton? Need a ... quarks? particle Electron microscope! $p > \frac{h}{10^{-15}} \sim 1 \text{ MeV}$ collider! Accelerate electrons to ~10-100 keV, see atoms!

Aren't WIMPs basically excluded by direct detection?

• Reminder about WIMP models: make up relic density with a single particle, order GeV to TeV mass, couplings are order of weak scale.

What does this plot tell us?

- Interpreted in a contact interaction (EFT) framework: applicable for these experiments but need to convert from other models to make a 1-to-1 equivalence
 - Different models have very different interactions (e.g. spin-dependent versus spin-independent)
- Freeze-in and other wimp paradigms can give very different probable coupling ranges
- Note that the neutrino floor is not a forbidden region, it's a hard to search region.

Freeze-in and freeze-out

29

When you said that model "really is simplified"...

Not a vector mediator

Not s-channel couplings

No BSM mediator

When you said that model "really is simplified"...

Not a WIMP

Axions, asymmetric dark matter, sterile neutrinos, non-WIMP SUSY candidates

(Not a particle)

How does an energy recovery LINAC work?