#### Supernova and solar neutrinos: the present and the future

Erin O'Sullivan Stockholm University, Oskar Klein Centre NNN 2018 – Vancouver With X-rays, which penetrate much more than ordinary light, you can see inside your hand. With neutrinos, which penetrate much more even than x-rays, you can look inside the Sun.

- Ray Davis Jr, Nobel Ceremony 2002



#### Solar neutrinos

### Solar neutrinos are produced in thermonuclear reactions









### Complementary approaches to measuring the solar upturn/transition



9

#### Looking ahead: Transition region



SNO+ has the potential to measure pep neutrinos to 10% uncertainty in 1 year (depending on backgrounds)

#### Hyper-K will measure the upturn with 3-5 **σ** significance

### Measuring the last unknowns of the solar neutrinos



#### Supernova neutrinos

#### Thermodynamics imprinted on neutrinos



### Detecting supernova neutrinos in IceCube

Abbasi+ 2011



#### Mainly inverse beta decay ( $\overline{\mathbf{v}}_{e} + \mathbf{p} \rightarrow \mathbf{n} + \mathbf{e}^{+}$ )

# IceCube has the best neutrino rate measurement from nearby

supernovae



15

## IceCube can measure features imprinted in the timing structure

Tamborra+ 14



### Detecting supernova neutrinos in water



#### Measuring the supernova direction



Super-K can measure the direction of a SN with half angle of 3-5° @ 10 kpc (x2 times better with Gd) Hyper-K can measure the direction of a SN with half angle of 1-2°@ 10 kpc 18

### Liquid scintillator detectors have unique NC channels



### Liquid scintillator can provide an early-early warning for a supernova



Time [day]

#### Lead measures non- $\overline{\mathbf{v}}_{e}$ channels

### Astronomically patient

```
\mathbf{v}_{e} + <sup>208</sup>Pb → <sup>207</sup>Bi + n + e<sup>-</sup>
\mathbf{v}_{e} + <sup>208</sup>Pb → <sup>206</sup>Bi + 2n + e<sup>-</sup>
\mathbf{v}_{x} + <sup>208</sup>Pb → <sup>207</sup>Pb + n
\mathbf{v}_{x} + <sup>208</sup>Pb → <sup>206</sup>Pb + 2n
```



### Liquid argon: a $\mathbf{v}_{e}$ measurement from nearby supernovae

 $v_{e} + {}^{40}\text{Ar} \rightarrow e^{-} + {}^{40}\text{K}^{*}$ 



22

#### The technologies: complementarity

|                       | Water    | lce      | Argon    | Lead  | Scint |
|-----------------------|----------|----------|----------|-------|-------|
| <b>v</b> <sub>e</sub> | <b>v</b> | <b>v</b> |          |       | ~     |
| Ve                    | ( 🖌 )    |          | <b>~</b> | ~     |       |
| V <sub>x</sub>        |          |          |          | ~     | ~     |
| Low energy            |          |          |          |       | ~     |
| Pointing              | ~        |          |          |       |       |
| Energy info           | <b>v</b> |          | ~        |       | ~     |
| How many events?      | Super-K  | IceCube  | DUNE     | HALO  | SNO+  |
|                       | 10,000   | 790,000  | 3,000    | ~tens | 7,000 |

## Neutrino detectors work together to sound the alarm



### Neutrino detectors connected to the SNEWS system



#### Summary

- New solar neutrino measurements with next-gen detectors will look for new physics, particularly in the vacuum-matter transition region, and will look for the remaining unmeasured solar neutrinos
- Using the entire suite of technologies available to measure supernova neutrinos will allow us to capitalize on this once-in-a-lifetime event

## Early supernova explosion produces mostly $\mathbf{v}_{e}$



Janka+ 2007

 $p + e^{-} \rightarrow n + v_e$ 

#### All flavours at late times



Janka+ 2007

ν<sub>e,μ,τ</sub>,ν<sub>e,μ,τ</sub>

 $e^++e^-\rightarrow v + v$  $n+e^+ \rightarrow p+\overline{v}_e$  $p+e^{-} \rightarrow n+v_{e}$ 

#### hep discovery potential

