Recent oscillation results from NOvA

NNN18 November 2018

Gregory Pawloski University of Minnesota

Long baseline neutrino experiment

E ≈ 2 GeV (off-axis narrow band beam) L = 810 km Oscillations governed by Δm_{32}^2 (Δm_{31}^2)

NuMI beam produced at Fermilab

 ν_{μ} and $\overline{\nu}_{\mu}$ beam modes Analyzed 8.85e20 POT with ν_{μ} mode Analyzed 6.91e20 POT with $\overline{\nu}_{\mu}$ mode $(\overline{\nu}_{\mu}^{} \rightarrow (\overline{\nu}_{x}^{}) \text{ oscillations})$

Two detector experiment

Near detector (Fermilab, IL) Measure beam before oscillation

Far Detector (Ash River, MN) Measure oscillated beam

Long baseline neutrino oscillation measurements

v_{μ} CC disappearance

 v_e CC appearance (long baseline <u>+</u>30% matter effect) Sensitive to: θ₂₃, δ_{CP}, Δm_{32}^2 (Mass Hierarchy)

NC disappearance

Sensitive to Sterile Neutrinos: θ_{24} , θ_{34} , Δm_{41}^2

Non-oscillation Measurements Near Detector cross sections measurements Supernova detection Exotic phenomena Monopoles, neutrino magnetic moment, etc

NC Coherent Pion Production Measurement

σ = 14.0 ± 0.9(stat.) ± 2.1(syst.)×10⁻⁴⁰ cm²/nucleus

Neutrino Mode

Neutrino Mode

Antineutrino Mode Target Focusing Horns Decay Pipe

 π^+

p

For NOvA energies, the antineutrino crosssection is ~2.8 times lower than the neutrino

Events classified with Convolutional Visual Network (CVN)

A deep learning algorithm similar to image recognition software Cells are like pixels and the energy depositions are like colors Filters pick out event features

One algorithm classifies: 1) v_{μ} CC 2) v_{e} CC 3) NC 4) Cosmic

Gregory Pawloski – University of Minnesota

Data Quality, preselection, containment, and cosmic rejection

e.g. min number hits, directionality cuts, distance from detector edges, etc Reduces cosmic background from $\sim 10^6$ events to less than 10 events (CVN does a lot too) Analysis specific

u_{μ} disappearance analysis

Additional muon track ID based on kNN (track length, dE/dx, scattering, quality)
Events separated into 4 subsamples by hadronic energy fraction
Lower had E fraction → fraction has better energy resolution and purity

v_e appearance analysis

Reclaim events that fail primary (core) cuts by reexamining with alternate cosmic cuts
Forms a peripheral sample
Separate core events into 2 subsamples by CVN value
Higher CVN → better purity

Near detector sample is Far Detector appearance background sample

 v_{u} -CC, NC, and intrinsic beam v_{e} -CC extrapolate differently to FD

- 1) Select events in ND (use data)
- 2) Map ND reco E to true E (use simulation)
- 3) Apply ratio of FD events to ND events in bins of true E (use simulation) Takes into account differences between two detectors
- 4) Apply oscillation probability on FD true E events (use simulation)
- 5) Map FD true E to reco E (use simulation)
- 6) Oscillated FD prediction

Don't need to separately measure flux, cross-section, efficiencies, etc in ND

Systematics accounted for by altering simulation at steps 2, 3, 4, and 5

Statistics Limited

Dominant systematics related to neutron modeling, calorimetric energy calibration, and cross sections

Statistics Limited

Dominant systematics related to cross sections and calorimetric energy calibration

Gregory Pawloski – University of Minnesota

Statistics Limited

Results

 v_{μ} CC Disappearance Results

	Total Observed	Best Fit Prediction	Total Background	Cosmic Background	Beam Background
Neutrino Mode	113	121	3.3	2.1	1.2
Antineutrino Mode	65	50	1.1	0.5	0.6

Gregory Pawloski – University of Minnesota

 v_e CC Appearance Results

	Total Observed	Best Fit Prediction	Wrong Sign	Cosmic Background	Beam Background
Neutrino Mode	58	59	0.7	3.3	11.1
Antineutrino Mode	18	15.9	1.1	0.7	3.5

Prefer Normal Hierarchy at 1.8σ

 3σ sensitivity to the hierarchy possible in 2020 with favorable parameters 3σ sensitivity for 30-50% of $\delta_{\rm CP}$ range by 2024

2σ sensitivity to CP violation in 2024 for favorable parameters

Thank You

NOvA Preliminary

