Systematics, calibration and analysis techniques in JUNO

Jian Tang

Sun Yat-Sen University, Guangzhou, China

On behalf of the JUNO collaboration

NNN2018, TRIUMF, Canada November 1st, 2018

Email: tangjian5@mail.sysu.edu.cn

- Overview of the JUNO experiment and challenges
- Systematics, calibration and analysis techniques
- Summary

JUNO: Jiangmen Underground Neutrino Observatory

72 institutes from 17 countries, 580 collaborators

ChinaNanjing U. ChinaNankai U. **ChinaNUDT ChinaNCEPU** ChinaPekin U. ChinaShandong U. ChinaShanghai JT U. **China**SYSU ChinaTsinghua U. **China**UCAS **ChinaUSTC** ChinaU, of South China ChinaWu Yi U. ChinaWuhan U. ChinaXi'an JT U. **ChinaXiamen University** ChinaZhengzhou U. CzechR. Charles U. Prague

FinlandU. Jyväskylä **France**APC Paris **FranceCENBG** Bordeaux **France**CPPM Marseille **France**IPHC Strasbourg **FranceSubatech Nantes** GermanyZEA FZ Julich GermanyRWTH Aachen U. GermanyTUM GermanyU. Hamburg GermanyIKP-2 FZ Jülich GermanyU. Mainz GermanyU. Tuebingen ItalyINFN Catania ItalyINFN di Frascati ItalyINFN-Ferrara ItalyINFN-Milano

ItalvINFN-Milano Bicocca ItalvINFN-Padova **ItalyINFN-Perugia** ItalvINFN-Roma 3 Latvia IECS Riga PakistanPINSTECH Islamabad **RussiaINR** Moscow **Russia**JINR **Russia**MSU SlovakiaU, Bratislava FMPICU TaiwanNational Chiao-Tung U. TaiwanNational Taiwan U. TaiwanNational United U. ThailandNARIT ThailandPPRLCU Bangkok **ThailandSUT** USAUMD1 USAUMD2

School of Physics

JUNO: Jiangmen Underground Neutrino Observatory

High power nuclear power plants (26.6 GW total power)

- Decode the tiny difference in reactor neutrino oscillation spectra.
- Determine the neutrino mass hierarchy as a main task.
- Precision measurements of solar mixing parameters: Δm_{21}^2 and $\sin^2 2\theta_{12}$
- SNe neutrinos, atmospheric neutrinos, geoneutrinos.....

Overview of the JUNO detector

Central detector

- Acrylic sphere with 20kt liquid scintillator
- 2000×20" PMTs in water buffer
- HQE PMT with \sim 78% coverage: 18000×20'' + 25000×3''
- Liquid scintillator:
 - High light-yield: 10⁴ photons/MeV
 - High transparency:
 - Attenuation Length (A.L.) > 20m @430nm
- Water Cherenkov muon veto
 - 35 ktons ultra-pure water
 - Efficiency > 95%
 - Radon control \rightarrow less than 0.2 Bq/m3
- Compensation coils: Earth magnetic field suppressed to <10%
- Top tracker inherited from OPERA
 - Precise muon tracking
 - 3 plastic scintillator layers
 - Covering half of the top area

Challenges in the MH determination

Table of Contents

- Overview of the JUNO experiment and challenges
- Systematics, calibration and analysis techniques
- Summary

Challenges in JUNO

• Answer: Meticulous calibration

(Different sources, over whole energy range, continuously, ...)

• Other experiments already achieved 0.5% accuracy

(Daya Bay ~0.5%, Double Chooz 0.74%, Borexino <1% (at low energies), KamLAND 1.4%)

New results from ESCAPE workshop

For more information see: Daya Bay collaboration, Phys. Rev. D 95, 072006 (2017)

Calibrations in JUNO

Five complementary systems under R&D: •

Energy scale and calibration data by MC

- ➢ Full absorption peak as measure.
- 60Co as energy scale: =1304 PE/MeV
- Reconstructed energy for ⁶⁸Ge: =0.96 MeV
- > Non-linearity: $E_{rec}/E_{true} = 0.96/1.022 = 0.94$
- Reconstruct energy for ⁵⁴Mn, ¹³⁷Cs, ⁴⁰K, n-H, n-C, Am-C with same energy scale.

Credit: Fei-Yang Zhang

Gamma to e-/e+ conversion

- Gamma convert to e-/e+:
 - Pair production
 - Compton scattering
 - Photoelectric
- Gamma energy non-linearity can be deduced from non-linearity of primary e-/e+
- > The electron from annihilation gamma should also be considered.

Construct a energy reconstruction model?

Energy resolution of gamma and e+

- \blacktriangleright Obviously difference between gamma and e+.
- Necessary to develop e+ energy resolution model.
- Resolution of gamma can be obtained from calibration data.
- Derive e+ energy resolution from gamma.

Credit: Fei-Yang Zhang

Model of gamma energy non-linearity

Empirical formula to describe electron non-linearity:

$$f_{nonl}(E) = \frac{E_{rec}}{E_{true}} = \frac{p_0 + p_1 \times E + \frac{p_2}{E}}{1 + p_3 \times e^{-p_4 \times E}}$$

Construct model of gamma energy non-linearity with PDF and electron non-linearity:

Ref:

- Liangjian Wen, et al., Ref: <u>Daya Bay DocDB 8240-v2</u>
- Fengpeng An, et al (Daya Bay Collaboration): PRL 112, 061801(2014)

Sensitivity in MH measurements

• Measurement with or without constraint on $\Delta m^2_{\mu\mu}$

Y.F. Li et al. Phys.Rev. D88 (2013) 013008, arXiv:1303.6733

- Sensitivity with 100k events (~6 yrs):
 - No constraint: $\Delta \chi^2 > 9$
 - With 1% constraint: $\Delta \chi^2 > 16$

$$|\Delta m^2_{ee}| - |\Delta m^2_{\mu\mu}| = \pm \Delta m^2_{21} \cdot (\cos(2\theta_{12}) - \sin(2\theta_{12})\sin(\theta_{13})\tan(\theta_{23})\cos(\delta))$$

Sign defined by MH
See H. Nunokawa et al, Phys.Rev. D72 (2005) 013009

Uncertainties in reactor neutrino spectra

Reactor spectrum might show micro-structure

(see e.g. A.A.Sonzogni, et al. arXiv:1710.00092, D. A. Dwyer &T. J. Langford, Phys. Rev. Lett. 114,012502 (2015))

• It might degrade the MH sensitivity by mimicking the periodic oscillation structures

\rightarrow Need reactor spectrum with energy resolution similar to JUNO

Uncertainties in reactor neutrino spectra

- Fine structure depends on the ab-initio calculation using nuclear database and can not be precisely determined.
- JUNO-TAO provides model independent measurement of fine structure, as inputs for JUNO

Solution: A Near Detector – JUNO-TAO

- JUNO Taishan Antineutrino Observatory (JUNO-TAO) acts as a near detector.
- Started R&D
- 2.9 ton Gd-LS in spherical vessel
- Outer buffer oil in stainless steel vessel
- \rightarrow Central detector size ~ 2 m x 2 m x 2 m
- \rightarrow @35 m to reactor (4.6GW): 10x JUNO statistics (6yr) after 1 year
- Two sensor types under consideration:
 - SiPM \rightarrow need -50°C \rightarrow 1.7% energy resolution
 - 2300 3.5" PMTs \rightarrow 2.5% energy resolution
- Additional motivations:
 - Shed light on reactor spectrum anomaly (5 MeV bump)
 - Serve as benchmark to test nuclear database

- JUNO is an unique reactor neutrino experiment to determine the neutrino mass hierarchy with unprecedented energy resolution.
- JUNO is doing meticulous calibrations to meet physics requirements.
- MH sensitivity: $\Delta \chi^2 > 9$ ($\Delta \chi^2 > 16$ with 1% constraint on $\Delta m^2_{\mu\mu}$)
- Rich additional physics program. Ref: Yaping's talk at this conference!
- Very active R&D program Thanks for your attention!
- Data taking will start in 2021
- Started near detector R&D : Energy resolution < 3%