Neutron detection in the water phase of SNO+ experiment

Efficient detection of neutrons in water is important because of its physics applications, e.g., reactor $\overline{\nu}_e$ detection via inverse-beta-decay (IBD).

Prompt signal

(2.2 MeV) A challenging task to detect in pure water Cherenkov detector due to the low energy.

SNO+ detector

- Multipurpose neutrino experiment
- Reuse the infrastructure of the SNO
- 900 tons of pure water (water phase) in a 12-mdiamter AV.
 - More than 9,000 PMTs

Yang ZHANG @NNN18 Workshop

\square A neutron source (AmBe) is deployed for n-detection study.

$$\alpha + {}^{9}\text{Be} \rightarrow {}^{12}\text{C}^* + n$$
 ${}^{12}\text{C}^* \rightarrow {}^{12}\text{C} + \gamma$ (prompt) 4.4 MeV

 $n + p \rightarrow d + \gamma$ (delayed) 2.2 MeV

Trigger threshold is lowered to ~1.5 MeV to detect the *n* events

Pairs selected spatially independent

We have successfully detected neutrons with an efficiency of 46.5 \pm 0.4%, which is the largest featured by an unloaded water Cherenkov detector. This opens up the IBD study in SNO+ water phase.