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Machine Learning Overview
Challenge in Computer Vision
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Machine Learning Overview
Challenge in Computer Vision

Development Workflow for non-ML algorithms

1. Write an algorithm based on basic (physics) principles

collection of
certain shapes

Acat =

(or, a neutrino)

8
Taken from slides by Fei-Fei’s TED talk



Machine Learning Overview
Challenge in Computer Vision

Development Workflow for non-ML algorithms

2. Run on simulation/data samples

3. Observe failures, implement fixes/heuristics

4. Iterate over 2 & 3 till a satisfactory level is achieved

5. Chain multiple algorithms as one algorithm, repeat 2, 3, and 4.

Stretching cat
(Nuclear FSI)

m
- . —\‘.
¢
J P

collection of
certain shapes

(or, a neutrino)
B :
Taken from slides by Fei-Fei’s TED talk

Acat =

Partial cat
(particle escaping /
fiducial volume)



Machine Learning Overview
Challenge in Computer Vision

Machine Learning

« Learn patterns from data

- automation of steps 2, 3, and 4 y Natural
atura

« Chain algorithms & optimize Neural
- step 5 addressed by design Network

¢ “Deep Learning”
- Revolutions in computer vision using deep

neural networks 0




Machine Learning Overview
Simple neural network (perceptron)

(ol BN ¥
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X
The basic unit of a neural net p—

1s the (loosely
based on a real neuron)

Takes 1n a vector of inputs (x). L
Commonly inputs are summed  mput Neuron  Activation

: : Sum Output
with weights (w) and offset ()

then run through activation. R Wi+ X+ b Wi X+b >0
VT/,' - X+ bi < 0.

11



Machine Learning Overview

Simple neural network (perceptron)

Imagine using two features to separate cats and dogs

domestication

from wikipedia

- -

0'()_6))— w; - X + b; w;-X+b; >0
10 w; - X+ b; < 0.

Output

cat
P
X1

—

By picking a value for w and b,

we define a boundary
between the two sets of data

12


https://en.wikipedia.org/wiki/Perceptron

Machine Learning Overview
Simple neural network (perceptron)

size

What if we have a new data point?

domestication

from wikipedia

Output

cat
dog

13


https://en.wikipedia.org/wiki/Perceptron

Machine Learning Overview
Simple neural network (perceptron)
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What if we have a new data point?

We can add another perceptron
to help (but does not yet solve
from wikipedia the pI’Oble)

domestication

14


https://en.wikipedia.org/wiki/Perceptron

Machine Learning Overview
Simple neural network (perceptron)

What if we have a new data point?
4
21
. Output
® o Xo >< D0 N v E
® X1 — 21 - i Cllilg
> Another layer can classify based

on preceding layer’s output
from wikipedia (of non-linear activation)

15


https://en.wikipedia.org/wiki/Perceptron

Machine Learning Overview
Back to analyzing a cat “image...”

1D array of discriminants

This part can be
done with a classic
(fully-connected)
neural network

How can we extract

“features” from “image”?

Convolutional Neural
Network

16



Machine Learning Overview
Convolutional Neural Network (CNN)

A

=1 4
o b M\

Goal: Dog or (Cat

convolutional 1D array of discriminants

filter (kernel)

O|1]0

01210
O]1]0

“weights”

17



Machine Learning Overview
Convolutional Neural Network (CNN)

1 AR

=
o b M\

Goal: Dog or (Cat

convolutional 1D array of discriminants
filter (kernel)
O|1]0 Apply many
filters
0]2]0 |—>X
ol1lo (Conwv. Lallyer)
“weights” .

Apply more
filters 1
L. (Conv. Layer) |




Machine Learning Overview
Convolutional Neural Network (CNN)

convolutional
filter (kernel)
O|1]0 Apply many
filters
of2|0|——> ®
ol1lo (Conv. Lallyer)
“weights” I Rl

Y 4
1 Down

sample

=
9

Goal: Dog or (Cat

1D array of discriminants

Repeat

-------------------------------.

Apply more
filters ]

L. (Conv. Layer) |

1 A
e /N

D

19
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Machine Learning Overview
Supervised Training of CNN
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Goal: Dog or (Cat

“Loss”
(error)

Differential o
convolutional operations 1D array of discriminants
filter (kernel) dL _ dL dz
ol1ilo dr  dz dx
X “Back-propagation”
—f (X,y) propag
O|l2]0
o[1]o Repeat
« . 9 "-------------------------------~~
Welghts . Apply more *s
' Down : filters - : '
sample L. (Conv. Layer) ]




Machine Learning Overview
Summarizing CNNs

« CNNs are “feature extraction machine”
- Consists of a “convolution layer” with “kernels”
- A chain of linear algebra operations = “massively parallel”
» Suited for acceleration using many-core hardwares (e.g. GPUs)

« CNNs seen as a geometrical data transformer

Input Image

Down-sampling
Feature Maps

(s

After Discriminants

After 3rd conv. layer

2nd conv. layer

After
1st conv. layer

21



Machine Learning Overview
Summarizing CNNs

« CNNs are “feature extraction machine”
- Consists of a “convolution layer” with “kernels”
- A chain of linear algebra operations = “massively parallel”
» Suited for acceleration using many-core hardwares (e.g. GPUs)
« CNNs seen as a geometrical data transformer
Input Image

- Activation

| for

written
texts

~~~~~~~~~~~~~~~~~~~

\\\\\\\\\\\\\\\\

AAAAAAAAD

- Activation

for
human

face



https://www.youtube.com/watch?v=AgkfIQ4IGaM

Machine Learning Overview
Revolution with Deep Neural Networks

(o B V
o o VS

2012

Public image categorization
competition w/ 1.2M images,
1000 object categories.

ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky
University of Toronto
kriz@cs.utoronto.ca

Ilya Sutskever
University of Toronto
ilya@cs.utoronto.ca

Geoffrey E. Hinton
University of Toronto
hinton@cs.utoronto.ca

> 30,000
Abstract ° °
We trained a large, deep convolutional neural network tglt\anlgns

high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 dif-
ferent classes. On the test data, we achieved top-1 and top-5 error rates of 37.5%
and 17.0% which is considerably better than the previous state-of-the-art. The
neural network, which has 60 million parameters and 650,000 neurons, consists
of five convolutional layers, some of which are followed by max-pooling layers,
and three fully-connected layers with a final 1000-way softmax. To make train-
ing faster, we used non-saturating neurons and a very efficient GPU implemen-
tation of the convolution operation. To reduce overfitting in the fully-connected
layers we employed a recently-developed regularization method called “dropout™
that proved to be very effective. We also entered a variant of this model in the
ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%,

IMAGE

“Deep” convolutional
neural network broke the
past record by a large margin

compared to 26.2% achieved by the second-best entry.

mite container ship motor scooter
mite container sibip motor scooter leqpard
black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat




Machine Learning Overview
Revolution with Deep Neural Networks
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https://arxiv.org/pdf/1703.06870.pdf
https://arxiv.org/pdf/1703.06870.pdf
https://arxiv.org/abs/1710.10196
https://arxiv.org/pdf/1703.06870.pdf
https://github.com/karpathy/neuraltalk2
https://arxiv.org/pdf/1703.06870.pdf
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< Detector Data Analysis  ~

Image Credit *
Fermilab Today

http://news.fnal.gov/2018/03/when-it-rains-2/



http://news.fnal.gov/2018/03/when-it-rains-2/

Physics Applications

Image Classification Application

Yo
P b "\
NOvVA Neutl.'lno o e NOVA 1
Event Classifier 5| T Sumivedy, Arxiv:1604.01444 |
. o i — NC background
Neutrino event % 10/ —— Beam v, background :
topology classification e See NOVA
with 2D images g s
oo ) : 1. ML Talk!
Inception Module
A convolution with k o v, cC "z)lassifierogutput o 1
multiple sized kernels
%@ %9 X View {  nf Y View -
Toy Inception sof - 6o .’ -
Diagram s0f of
1x1 S 1
3X3 20 20}
5X5 10} 10f
NOvA’s CVN o | & &%t
utilize inception rere e
module adopted 13- 99
from GoogleNet Inp ut 11mMages 20



https://arxiv.org/abs/1604.01444
https://arxiv.org/abs/1604.01444

Physics Applications
Beyond image classification: pixel segmentation

Fhm N

27



Physics Applications
Beyond image classification: pixel segmentation

s iy o (US

WoS up.
Y Samn;.
W50 ) (deg,, - Plin
A0 eneo® Oding)®

« Combine “up-sampling” + convolutions
e Outcome: “learnable” interpolation filters




Physics Applications

Beyond image classification: pixel segmentation

MicroBooNE
Simulation
Preliminary

1 A

e N\

=
9

MicroBooNE Paper
arXiv:1808.07269

MicroBooNE
Simulation
Preliminary



https://arxiv.org/abs/1808.07269

Physics Applications
Drawbacks of supervised training

el A

DN

What can we do about imperfect simulation?

« Problematic: the “signal distribution” learnt by the
algorithm may be different in two domains!

e Mitigation techniques in ML domain?

- Can try CNN to “locate” where it is
- Can try CNN to “fix” the discrepancy
- Can try a training technique to minimize the effect

30



Physics Applications
Drawbacks of supervised training

ol AL
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What can we do about imperfect simulation?

« Problematic: the “signal distribution” learnt by the
algorithm may be different in two domains!

e Mitigation techniques in ML domain?

- Can try CNN to “locate” where it is See Minerva
- Can try CNN to “fix” the discrepancy  [VII., Tallk!
- Can try a training technique to minimize the effect

oL, OL, .
— |79, — )0, Closs L, Maximize the loss for
o} IZ> E(‘IM label 7 discriminate data vs.
5 = 5 ) = ) simulation, feature extractors
o) ¢ — label predictor Gy (+0,) are penalized to key on
Gl T _ 96y ¢y domain classifier Ga(-:6,) simulation specific information
(OOg \ J\,\.@&‘QQ;. ( A \
feature extractor G ¢(-;6y) {?}b@f& £ Minerva Paper arXiv:1808.08332
. €. 74 |:> |$ Q) domain label d Domain-Adversarial Training
oL -
E> 0 A\ OL 4 @ of Neural Networks 2

_ forwardprop  backprop (and produced derivatives) | 00 d J. Mach. Learn. Res. 17 (2016)



https://arxiv.org/pdf/1505.07818.pdf
https://arxiv.org/abs/1808.08332

Physics Applications
DNNs for full reconstruction on “Big Data”

Fhm AN

Full reconstruction (multi-task network)

N [ « 3D particle clustering + type ID
RS | « Detection of vertex, particle “start/end”
. Sparse Big Data
%ot ! -#  Locally dense, but overall <0.1% occupancy!

5123 volume segmentatiop
w/ sparse linear algebra ?
library

Interest?

Come talk to me :)




Physics Applications

Interested in? Let us work together!

DeepLearnPhysics

Research Collaboration

(About us )

o) ¥ (=)
Blog \TwitteJ \Email/

RN R\
) v}
Open Data/! ‘\Gﬂ[y’

Hands-on workshop
@ SLAC/Stanford

()

DeepLearnPhysics (deeplearnphysics.org)

» Collaboration for ML technique R&D

- ~70 members including HEP exp/theory, nuclear physics, BES
(LCLS, SSRL), Cryo-EM, accelerator, AI/CS community

« Open source software/tools, containers, open data
- our framework to collaborate & share reproducible results

« Community building

- Workshops (done at many universities/national labs)
- Sharing opportunities (talks, jobs/fundings, etc.)

C 5 daLab Search Competitions My Competitions ~ Help ~ SignUp  Sign In

Collaborations
beyond HEP

¢ - N

83/ AL N

A A A R L T RS 0 R Y A QA B A
‘%': ¥ "_ 3 ?"-\. "'. !.: ' e 3

Semantic Segmentation of LArTPC tracks

Previous » Current Next

Aug. 12, 2018, 1 a.m. UTC Oct. 2, 2018, 1a.m. UTC Oct. 2, 2018, 1 a.m. UTC

Learn the Details | Phases rticipat It ns %)
o . .
'''''' v Why segmenting pixels?
Evaluati
In the first step of this challenge we ask you to classify non-zero pixels into two basic category of particles: energy
Terms and C

deposited by electron/positron, referred to as EM-particle, vs. all other particles. An accurate identification of EM-
Starter kit particle pixels is a crucial task to identify electron neutrino interaction for neutrino oscillation experiments using

LArTPC detectors. cess of LArTPC experim
pixels are clustered into in analyzing the topological feature of ci

al data recol

on is made after
ividual particles an ustered pixels. However, this
is proven to be difficult. Instead, having a pixel-level distinction of EM-particles beforehand can improve the

performance of clustering and simplify the rest of data reconstruction chain.

At the second step of the challenge, we will add another distinct label to those pixels that contain energy
deposited by protons. Two most basic yet important neutrino interaction final states contain electron+proton from
electron neutrino interaction, or muon+proton from muon neutrino interaction. Adding the proton label therefore

Public challenge (collab. w/ LHC)



http://www.deeplearnphysics.org
http://deeplearnphysics.org
http://deeplearnphysics.org/authors.html
https://github.com/DeepLearnPhysics
https://singularity-hub.org/collections/459
http://deeplearnphysics.org/DataChallenge
https://competitions.codalab.org/competitions/19818#learn_the_details
https://competitions.codalab.org/competitions/19818#learn_the_details

Thank you!

for your attention :)

o@F

—

Take-away messages...

1. CNNs are image feature extractors

2. CNNs are useful for many computer vision tasks including...
 Image classification & Object detection in an 1mage
* Pixel segmentation & Clustering

3. DNNs are used in physics analysis & reconstruction tasks

4. DNNs/ML are becoming more popular, and we’re learning...
(Join DLP!)

More Exciting Talks to Follow!



Things avoided in my talk but popular...

« Graph neural network
- Emerged from social network analysis, very popular

» Generative models
- Including GANSs (e.g. “Fast simulation” in LHC

« Recurrent neural network
- Sequence analysis (language as well as physics!




Glossaries
Convolutional Neural Networks (CNNs)

» A convolution filter (neuron) applies a small kernel to
input data, and produces a feature-map.

» A convolution layer consists of multiple filters, and the
output of a layer is another “image” matrix data with many
channels

» CNNs are typically made of successive down-sampling
and convolution operations, and “many” layers = “deep”
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Physics Applications
Beyond image classification: object detection

» Object Detection e 2

- Train CNN to regress “object location & size” | Foar [

- “sliding windows” to find “regions of interest”

- With spatially contracted, feature-enhanced
data, detection is much faster!

Input Image .
pH 5 . Activation

for
written
texts

 Activation

| for

human
face




Physics Applications
Beyond image classification: object detection

ol A7~

Fhm AN

« Object Detection

"_;,!r,‘ 3 1.;.-
3 "' - s
e

.
¥

S ~ PO TN o 5 .:
RE cabde o

- Train CNN to regress “object location & size” |EEm=S

- “sliding windows” to find “regions of interest”
- With spatially contracted, feature-enhanced
data, detection is much faster!

MicroBooNE ‘
JINST 12 Po3011 (2017)

arXiv:1611.05531 |
' Nu: 0.926

MicroBooNE | | N Localize

Neutrino!

Slmulatlon + Data Qverlay


http://iopscience.iop.org/article/10.1088/1748-0221/12/03/P03011/meta
https://arxiv.org/abs/1611.05531

Physics Applications

Beyond image classification: pixel segmentatio

« Combine “up-sampling” + convolutions
e Outcome: “learnable” interpolation filters




|

"

mage context analysis “Pose” detection
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0.30 green
-0.09 behind
-0.14 her

Convolutional
Neural
Network

~ How does it work? ~




“Classical” Neural Net

Fully-Connected, Feed-forward,
Multi-Layer Perceptrons

OOO
OOOO
O OO0

O00

iInput hidden output
layer,  layers layer, ¥

A traditional neural network consists of a stack of layers of such
neurons where each neuron 1s fully connected to other neurons of the
neighbor layers

43



“Classical” Neural Net

... 1S not ideal for image classification ...

Image classification

« What is input neurons?
- Every pixel value

 How many weights?

- # of pixels in an image!

« Fully connected?
- translation variant!

44



Convolutional Neural Networks

CNN 1ntroduce a limitation by forcing the network to
look at only local, translation invariant features

Ji,j(X) = O'(Wi - X+ bi) :

neuron Activation of a neuron depends on
the element-wise product of 3D
weight tensor with 3D input data
feature map and a bias term

* Translate over 2D space to process the whole input

* Neuron learns translation-invariant features
- Suited for a “iomogeneouns” detector like LArTPC

e QOutput: a “feature-enhanced” image (feature map)

45



Convolutional Neural Networks

Filter

Neuron
output

Activation
function

Dot product,

add bias

weights

Toy visualization of the CNN operation

46



Convolutional Neural Networks

Feature Map

<

Toy visualization of the CNN operation

47



Convolutional Neural Networks

Introduction to CNNs Feature Maps
N Filters

Image

apply
many filters

Toy visualization of the CNN operation

48



How Image Classification Networks Work

Feature map visualization example

olbox
convl pl nl1 convZd pd nZ conv



https://www.youtube.com/watch?v=AgkfIQ4IGaM

How Image Classification Networks Work

Goal: extract features to give “single label” to an image

1. Convolution operation
2. Down-sampling

Down-sampling
Feature Maps

«P)
(=Y )
]
=
P
~—
=]
(B
=
g

After 3rd convolution

2nd convolution
After

1st convolution

Series of convolutions
+ down-sampling

50



How Image Classification Networks Work

Goal: extract features to give “single label” to an image

1. Convolution operation
2. Down-sampling

& d

“Written Texts”
Down-sampling feature map

Feature Maps

After
After 3rd convolution

Input Image

2nd convolution
After

1st convolution

Series of convolutions

------------- ) 1

+ down-sampling

“Human Face”
Image credit: DeepVis @ youtube 51 feature map


https://www.youtube.com/watch?v=AgkfIQ4IGaM

How Image Classification Networks Work

Goal: extract features to give “single label” to an image

1. Convolution operation
2. Down-sampling

Down-sampling
Feature Maps

«P)
(=Y )
]
=
P
~—
=]
(B
=
g

After 3rd convolution

2nd convolution
After

1st convolution

Series of convolutions
+ down-sampling

o



How Image Classification Networks Work

Goal: extract features to give “single label” to an image

1. Convolution operation
2. Down-sampling

“Written Texts”
Down-sampling feature map

Feature Maps

After
After 3rd convolution

Input Image

2nd convolution
After

1st convolution

Series of convolutions

------------- ) 1

+ down-sampling

“Human Face”
53 feature map



How SSNet Works




DNN for LArTPC Data Reconstruction

Repeat

1/2 down-sampling “«P»  x2up-sampling Interp()lation filters
+ ResNet convolutions + ResNet convolutions (up_ S amplin g)

How does
U-ResNet Work?

Concatenation of 512 x 512 tensors

High spatial resolution info:

Intermediate

512 X 512 X 64 .
2 2 4 Concatenation of tensors

\ at all spatial dimensions
(32, 64, 128, 256)

\ ﬁ / + Convolutions
- _ (“learnable” filter)
U-ResNet

Down sampling + Convolutions to identify
highly abstract features (e.g. “human face”)
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Scalable ML Algorithms
Machine Learning for LArTPC Image Analysis

s iy o (U

Scalable software 1s critical

« Big detector = big data ... can we run a data production?
« Combining more algorithms = more computing resource (CR)

Challenges for ML on LArTPC data

« ML in computer vision = linear algebra on matrix data
« CR for scales by data size = power law ("2 for 2D, "3 for 3D)
« LArTPC data is unique: locally dense but generally very sparse

- Only ~1% of pixels are non-zero in 2D images, and ~0.1% in 3D volumetric data
- “Trajectory” is really 1D ... non-zero pixel count does not scale by power law!

1

“curse of dimensionality”

R | 2 -
. _ 8 . L \
o . = . L ad .
. v -
o LA Y ——

. ) ._n
h - Sre .
<
s L L )
Coge d
A = A
0.45 TR O
A mn—— ) ) e_ e
0 0.2 1 . y
1D |
from s L4
| % ‘1
» Lo -‘7 _’ {

0.58

0 0.58 1



Scalability Solution for Sparse Data
Machine Learning for LArTPC Image Analysis

independent solutions pursued

Sparse linear algebra ... efficient operation, ignores zero pixels (ZP)
Graph neural network ... efficient data representation, eliminate ZP

© @
.‘-_' ® @ ‘. A .
o . )

In-Grid Data Graph Data
(2D image)

@ @
%0 00
.00
®e
Target —@® @
OR®
e Popular for social
Target @ o = network analysis,
o O o O o node detection,
®_0 izati .
s ® oo categorization, Network prediction
Y clustering

Track vs. Shower




Scalability Solution for Sparse Data
Machine Learning for LArTPC Image Analysis

independent solutions pursued

Sparse linear algebra ... efficient operation, ignores zero pixels (ZP)
Graph neural network ... efficient data representation, eliminate ZP
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Two independent solutions pursued

« Sparse linear algebra ... efficient operation, ignores zero pixels (ZP)
« Graph neural network ... efficient data representation, eliminate ZP
« Bottom line: both works great

Dense Sparse
U-ResNet [U-ResNet

Process time

(forward path) 4:5S 6.6 ms

Memory

25.4GB | 50MB

Train time

M

- 10days | 15min. D
— s — B m———___ '_-‘/‘

This is a game changer...
Curse of dimensionality almost addressed = scalable to big data

Using 3D data with 192”3 pixels
2 events per GPU processing

Trained to reach 98% accuracy in the
segmentation task (defined in paper)

1/2 neurons compared to the published
2D U-ResNet (code)
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Randomly picked event
Prediction accuracy 99.93%
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Scalability Solution for Sparse Data

Machine Learning for LArTPC Image Analysis
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Randomly picked event
Prediction accuracy 99.72%
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Full Reconstruction Chain
Machine Learning for LArTPC Image Analysis

Fhm AN

Multi-task Deep Neural Network

o A cluster of many task-specific networks in 2D & 3D
- Vertex finding, clustering, particle ID, etc.

\Pig Network

O O O ©O O O O O
NARR AAAR

e STV o T .
Input Data | i D
crens igh-level
Outputs from the e OUtPUt

individual networks
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Full Reconstruction Chain
Machine Learning for LArTPC Image Analysis

Fhm AN

Where we are...

2 et ISP PP A P N R P S SN I SN A P I P RS PN SIS PR A e

' & 1. Space point (track edges) + p1xel feature annotation
O 2. Vertex finding + particle clustering

! @ 3. Particle type + energy/momentum

| O 4. Hierarchy building

Aiming to complete the full chain v.1 1n early 2019, move to
physics analysis applications
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