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1. Machine Learning & Computer Vision 
2. Applications in neutrino/NDK physics detectors 
3. Wrap-up
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KamLAND

NOvA Super-K

MicroBooNE

Pixel LArTPC (simulation)

Need for advanced algorithms 
for analyzing high resolution data 

with complex topologies. 
(goal: maximize physics output) 
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Machine Learning Overview 
Challenge in Computer Vision

Taken from slides by Fei-Fei’s TED talk

How to write  an algorithm  
to identify a cat?

… very hard task …
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Machine Learning Overview 
Challenge in Computer Vision

1.  Write an algorithm based on basic (physics) principles  

algorithm

collection of  
certain shapesA cat  =

(or, a neutrino)

Development Workflow for non-ML algorithms

Taken from slides by Fei-Fei’s TED talk
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1.  Write an algorithm based on basic (physics) principles  
2. Run on simulation/data samples 
3. Observe failures, implement fixes/heuristics 
4. Iterate over 2 & 3 till a satisfactory level is achieved 
5. Chain multiple algorithms as one algorithm, repeat 2, 3, and 4.

Partial cat 
(particle escaping 
fiducial volume)

Stretching cat 
(Nuclear FSI)

collection of  
certain shapesA cat  =

(or, a neutrino)

algorithm

Development Workflow for non-ML algorithms

Machine Learning Overview 
Challenge in Computer Vision

Taken from slides by Fei-Fei’s TED talk



!10

Machine Learning
• Learn patterns from data 

- automation of steps 2, 3, and 4 

• Chain algorithms & optimize 
- step 5 addressed by design 

• “Deep Learning”  
- Revolutions in computer vision using deep 

neural networks

Machine Learning Overview 
Challenge in Computer Vision

1.  Write an algorithm based on basic (physics) principles  
2. Run on simulation/data samples 
3. Observe failures, implement fixes/heuristics 
4. Iterate over 2 & 3 till a satisfactory level is achieved 
5. Chain multiple algorithms as one algorithm, repeat 2, 3, and 4.

Development Workflow for non-ML algorithms

Natural 
Neural 

Network
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⟶

x0 
 

The basic unit of a neural net 
is the perceptron (loosely 
based on a real neuron) 

Takes in a vector of inputs (x). 
Commonly inputs are summed 
with weights (w) and offset (b) 

then run through activation.

x

⋮

[ 

[ 

x1 
 

xn 
 

∑

w0

w1

wn

⋮
+ b

Input Neuron 
Sum

Activation 
Output

σ( x )➞

Machine Learning Overview 
Simple neural network (perceptron)
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By picking a value for w and b,  
we define a boundary  

between the two sets of datafrom wikipedia

[ x0 
 

x1 
 

∑0

Output

[ 

cat 
dog

Imagine using two features to separate cats and dogs

∑0

Machine Learning Overview 
Simple neural network (perceptron)

https://en.wikipedia.org/wiki/Perceptron
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from wikipedia

[ x0 
 

x1 
 

∑0

Output

[ 

cat 
dog

What if we have a new data point?

∑0

Machine Learning Overview 
Simple neural network (perceptron)

https://en.wikipedia.org/wiki/Perceptron
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from wikipedia

What if we have a new data point?

We can add another perceptron 
to help (but does not yet solve 

the problem)

x0 
 

x1 
 

∑0

∑1

∑0

∑1

Machine Learning Overview 
Simple neural network (perceptron)

https://en.wikipedia.org/wiki/Perceptron
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from wikipedia

What if we have a new data point?

[ x0 
 

x1 
 

Output

[ 

cat 
dog∑1

∑2

Another layer can classify based 
on preceding layer’s output  
(of non-linear activation)

∑0

∑0

∑1

∑2

Machine Learning Overview 
Simple neural network (perceptron)

https://en.wikipedia.org/wiki/Perceptron
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Machine Learning Overview 
Back to analyzing a cat “image…”

Goal: Dog Cator

1D array of discriminants

How?
This part can be 

done with a classic 
(fully-connected) 
neural network

How can we extract 
“features” from “image”?

Convolutional Neural 
Network
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Goal: Dog Cator

0
0
0 1

2 0
0

1 0
⊗

1D array of discriminants

Machine Learning Overview 
Convolutional Neural Network (CNN)

“neuron sum”

convolutional 
filter (kernel)

“weights”
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Machine Learning Overview 
Convolutional Neural Network (CNN)

Goal: Dog Cator

1D array of discriminants

Down 
sample

Apply more 
filters 

(Conv. Layer)

0
0
0 1

2 0
0

1 0

convolutional 
filter (kernel)

⊗
Apply many 

filters 
(Conv. Layer)

“weights”
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Machine Learning Overview 
Convolutional Neural Network (CNN)

Goal: Dog Cator

1D array of discriminants

Down 
sample

0
0
0 1

2 0
0

1 0
⊗

Apply many 
filters 

(Conv. Layer) Repeat
Apply more 

filters 
(Conv. Layer)

convolutional 
filter (kernel)

“weights”
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Machine Learning Overview 
Supervised Training of CNN

Goal: Dog Cator

1D array of discriminants

Down 
sample

0
0
0 1

2 0
0

1 0 x
y

f (x,y)

“Loss” 
(error)

z = f (x,y) Repeat

Differential 
operations

“Back-propagation”

Apply more 
filters 

(Conv. Layer)

convolutional 
filter (kernel)

“weights”
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Machine Learning Overview 
Summarizing CNNs

• CNNs are “feature extraction machine”  
-  Consists of a “convolution layer” with “kernels” 
-  A chain of linear algebra operations = “massively parallel” 
‣  Suited for acceleration using many-core hardwares (e.g. GPUs) 

• CNNs seen as a geometrical data transformer
Input Image

After 
1st conv. layer

Discriminants

Down-sampling 
Feature Maps

After 
2nd conv. layer

After 
3rd conv. layer
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Machine Learning Overview 
Summarizing CNNs

• CNNs are “feature extraction machine”  
-  Consists of a “convolution layer” with “kernels” 
-  A chain of linear algebra operations = “massively parallel” 
‣  Suited for acceleration using many-core hardwares (e.g. GPUs) 

• CNNs seen as a geometrical data transformer
Input Image

After 
1st conv. layer

Discriminants

Down-sampling 
Feature Maps

After 
2nd conv. layer

After 
3rd conv. layer

Activation 
for 

written 
texts

Activation 
for 

human 
facehttps://www.youtube.com/watch?v=AgkfIQ4IGaM

https://www.youtube.com/watch?v=AgkfIQ4IGaM
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Machine Learning Overview 
Revolution with Deep Neural Networks

2012

> 30,000 
citations“Deep” convolutional 

neural network broke the 
past record by a large margin

Public image categorization 
competition w/ 1.2M images, 

1000 object categories.
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Machine Learning Overview 
Revolution with Deep Neural Networks

Mask R-CNN 
arXiv:1703.06870  

NVIDIA 
arXiv:1710.10196 

NeuralTalk 
github:karpathy/neuraltalk2 

https://arxiv.org/pdf/1703.06870.pdf
https://arxiv.org/pdf/1703.06870.pdf
https://arxiv.org/abs/1710.10196
https://arxiv.org/pdf/1703.06870.pdf
https://github.com/karpathy/neuraltalk2
https://arxiv.org/pdf/1703.06870.pdf


Machine Learning in Computer Vision
High-Precision 

 Detector Data Analysis 

Image Credit 
Fermilab Today 
http://news.fnal.gov/2018/03/when-it-rains-2/  25

http://news.fnal.gov/2018/03/when-it-rains-2/


Physics Applications 
Image Classification Application

NOvA Neutrino 
Event Classifier

Neutrino event 
topology classification 

with 2D images

NOvA
arxiv:1604.01444

Input “images”

1x1
3x3

5x5

“Inception Module”

⊗ ⊗ ⊗

⊕

A convolution with 
multiple sized kernels

NOvA’s CVN 
utilize inception 
module adopted 
from GoogleNet

See NOvA 
ML Talk!

Toy Inception 
Diagram
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https://arxiv.org/abs/1604.01444
https://arxiv.org/abs/1604.01444
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Physics Applications 
Beyond image classification: pixel segmentation

?
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Physics Applications 
Beyond image classification: pixel segmentation

Intermediate,  
low-resolution 

feature map

down-sampling 

(encoding)
up-sampling 
(decoding)

?

• Combine “up-sampling” + convolutions 
• Outcome: “learnable” interpolation filters
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Physics Applications 
Beyond image classification: pixel segmentation

?

νe
proton

e-

See MicroBooNE 
ML Talk! MicroBooNE Paper 

arXiv:1808.07269

https://arxiv.org/abs/1808.07269


• Problematic: the “signal distribution” learnt by the 
algorithm may be different in two domains! 

• Mitigation techniques in ML domain? 
-  Can try CNN to “locate” where it is 
-  Can try CNN to “fix” the discrepancy 
-  Can try a training technique to minimize the effect

!30

Physics Applications 
Drawbacks of supervised training

What can we do about imperfect simulation?
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Physics Applications 
Drawbacks of supervised training

What can we do about imperfect simulation?

See Minerva 
ML Talk!

• Problematic: the “signal distribution” learnt by the 
algorithm may be different in two domains! 

• Mitigation techniques in ML domain? 
-  Can try CNN to “locate” where it is 
-  Can try CNN to “fix” the discrepancy 
-  Can try a training technique to minimize the effect

Domain-Adversarial Training 
of Neural Networks 

J. Mach. Learn. Res. 17  (2016)

Maximize the loss for 
discriminate data vs. 

simulation, feature extractors 
are penalized to key on 

simulation specific information
Minerva Paper arXiv:1808.08332

https://arxiv.org/pdf/1505.07818.pdf
https://arxiv.org/abs/1808.08332
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Physics Applications 
DNNs for full reconstruction on “Big Data”

5123 volume segmentation 
w/ sparse linear algebra 
library

Interest? 
Come talk to me :)

Multi-task 
network cascade 

start/end point 
+ segmentation

Full reconstruction (multi-task network) 
• 3D particle clustering + type ID 
• Detection of vertex, particle “start/end” 

Sparse Big Data 
•  Locally dense, but overall <0.1% occupancy!
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Physics Applications 
Interested in? Let us work together!

DeepLearnPhysics (deeplearnphysics.org)

• Collaboration for ML technique R&D 
- ~70 members including HEP exp/theory, nuclear physics, BES 

(LCLS, SSRL), Cryo-EM, accelerator, AI/CS community 
• Open source software/tools, containers, open data 

- our framework to collaborate & share reproducible results 
• Community building 

- Workshops (done at many universities/national labs) 
- Sharing opportunities (talks, jobs/fundings, etc.) 

Hands-on workshop 
@ SLAC/Stanford

Public challenge (collab. w/ LHC)

Collaborations 
beyond HEP

http://www.deeplearnphysics.org
http://deeplearnphysics.org
http://deeplearnphysics.org/authors.html
https://github.com/DeepLearnPhysics
https://singularity-hub.org/collections/459
http://deeplearnphysics.org/DataChallenge
https://competitions.codalab.org/competitions/19818#learn_the_details
https://competitions.codalab.org/competitions/19818#learn_the_details


Take-away messages…
1. CNNs are image feature extractors

4. DNNs/ML are becoming more popular, and we’re learning… 
(join DLP!)

 34

Inside 
me

Thank you! 
for your attention :)

2. CNNs are useful for many computer vision tasks including… 
•  Image classification & Object detection in an image 
•  Pixel segmentation & Clustering

3. DNNs are used in physics analysis & reconstruction tasks

More Exciting Talks to Follow!
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Things avoided in my talk but popular…

• Graph neural network 
-  Emerged from social network analysis, very popular 

• Generative models 
-  Including GANs (e.g. “Fast simulation” in LHC) 

• Recurrent neural network 
-  Sequence analysis (language as well as physics!) 

• Hyper-parameter optimizations 
• ML on distributed systems (HPCs) 
• Quantum X (ML, neural network, algorithms, etc) 

-  No idea, please don’t ask me about this
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Glossaries 
Convolutional Neural Networks (CNNs) 
•  A convolution filter (neuron) applies a small kernel to 

input data, and produces a feature-map. 
•  A convolution layer consists of multiple filters, and the 

output of a layer is another “image” matrix data with many 
channels 

•  CNNs are typically made of  successive down-sampling 
and convolution operations, and “many” layers = “deep” 
CNNs. 

Applications 
•  Computer vision: image classification, object detection, 

semantic segmentation, clustering



Thank you! 
Questions?

!37
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Backup Slides
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Physics Applications 
Beyond image classification: object detection

• Object Detection  
-  Train CNN to regress “object location & size” 
-  “sliding windows” to find “regions of interest” 

- With spatially contracted, feature-enhanced  
data, detection is much faster!

Input Image

After 
1st conv. layer

Discriminants

Down-sampling 
Feature Maps

After 
2nd conv. layer

After 
3rd conv. layer

Activation 
for 

written 
texts

Activation 
for 

human 
face



Physics Applications 
Beyond image classification: object detection

νµ

MicroBooNE 
Simulation + Data Overlay

Localize 
Neutrino!

νµ

MicroBooNE 
JINST 12 P03011 (2017) 
arXiv:1611.05531

See MicroBooNE 
Paper!

• Object Detection  
-  Train CNN to regress “object location & size” 
-  “sliding windows” to find “regions of interest” 

- With spatially contracted, feature-enhanced  
data, detection is much faster!

!40

http://iopscience.iop.org/article/10.1088/1748-0221/12/03/P03011/meta
https://arxiv.org/abs/1611.05531
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Physics Applications 
Beyond image classification: pixel segmentation

Intermediate,  
low-resolution 

feature map

down-sampling 

(encoding)
up-sampling 
(decoding)

• Combine “up-sampling” + convolutions 
• Outcome: “learnable” interpolation filters

⊕
⊕

⊕



Convolutional 
Neural 

Network 
~ How does it work? ~

Image context analysis “Pose” detection

 42



Fully-Connected, Feed-forward, 
 Multi-Layer Perceptrons

A traditional neural network consists of a stack of layers of such 
neurons where each neuron is fully connected to other neurons of the 
neighbor layers

 43

“Classical” Neural Net



… is not ideal for image classification …

Image classification 
• What is input neurons? 

-  Every pixel value 
•How many weights? 

-  # of pixels in an image! 

•Fully connected? 
-  translation variant!

“Classical” Neural Net

 44



CNN introduce a limitation by forcing the network to 
look at only local, translation invariant features

input feature map
hidden  
layers~x

input  
layer,   

output  
layer,   ~y

(a) Feed-forward neural network (b) Feed-forward neural network

neuron Activation of a neuron depends on 
the element-wise product of 3D 
weight tensor with 3D input data 

and a bias term
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• Translate over 2D space to process the whole input 
• Neuron learns translation-invariant features 

- Suited for a “homogeneous” detector like LArTPC 
• Output: a “feature-enhanced” image (feature map)

Convolutional Neural Networks



Toy visualization of the CNN operation
 46

Convolutional Neural Networks
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Introduction to CNNs
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Introduction to CNNs
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Toy visualization of the CNN operation
 47

Convolutional Neural Networks
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Introduction to CNNs

Image

Genty

N Filters

D
ep

th

DL µB NP

Feature Maps

many weights!

apply 
many filters

Toy visualization of the CNN operation
 48

Convolutional Neural Networks



Feature map visualization example 
• https://www.youtube.com/watch?v=AgkfIQ4IGaM

Neuron concerning face Neuron loving texts 
(and don’t care about your face)
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How Image Classification Networks Work

https://www.youtube.com/watch?v=AgkfIQ4IGaM


How Image Classification Networks Work
Goal: extract features to give “single label” to an image 
1. Convolution operation 
2. Down-sampling

Series of convolutions  
+ down-sampling

In
pu

t I
m

ag
e

After 
1st convolution

Discriminants

Down-sampling 
Feature Maps

After 
2nd convolution

After 
3rd convolution

 50



Series of convolutions  
+ down-sampling

How Image Classification Networks Work
Goal: extract features to give “single label” to an image 
1. Convolution operation 
2. Down-sampling

In
pu

t I
m

ag
e

After 
1st convolution

Discriminants

Down-sampling 
Feature Maps

After 
2nd convolution

After 
3rd convolution
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“Written Texts” 
feature map

“Human Face” 
feature mapImage credit: DeepVis @ youtube

https://www.youtube.com/watch?v=AgkfIQ4IGaM


How Image Classification Networks Work
Goal: extract features to give “single label” to an image 
1. Convolution operation 
2. Down-sampling

Series of convolutions  
+ down-sampling

In
pu

t I
m

ag
e

After 
1st convolution

Discriminants

Down-sampling 
Feature Maps

After 
2nd convolution

After 
3rd convolution

 52



Series of convolutions  
+ down-sampling

How Image Classification Networks Work
Goal: extract features to give “single label” to an image 
1. Convolution operation 
2. Down-sampling

In
pu

t I
m

ag
e

After 
1st convolution

Discriminants

Down-sampling 
Feature Maps

After 
2nd convolution

After 
3rd convolution
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“Written Texts” 
feature map

“Human Face” 
feature map



How SSNet Works
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In
pu

t I
m

ag
e

O
ut

pu
t I

m
ag

eDown-sampling Up-sampling

feature
tensor

Intermediate, low-resolution 
feature map

Goal: recover precise, pixel-level location of objects 
1. Up-sampling 

-  Expand spatial dimensions of feature maps 
2. Convolution 

-  Smoothing (interpolation) of up-sampled feature maps



DNN for LArTPC Data Reconstruction

U-ResNet

How does 
U-ResNet Work?

Down sampling + Convolutions to identify 
highly abstract features (e.g. “human face”)

Interpolation filters 
(up-sampling) 
+ Convolutions 
(“learnable” filter)
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Path to Big Data 
Scalable Algorithms

!56
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Scalable software is critical 
• Big detector = big data … can we run a data production? 
• Combining more algorithms = more computing resource (CR) 

Challenges for ML on LArTPC data 
• ML in computer vision = linear algebra on matrix data 
• CR for scales by data size = power law (^2 for 2D, ^3 for 3D) 
• LArTPC data is unique: locally dense but generally very sparse 

- Only ~1% of pixels are non-zero in 2D images, and ~0.1% in 3D volumetric data 
- “Trajectory” is really 1D … non-zero pixel count does not scale by power law!

Scalable ML Algorithms 
Machine Learning for LArTPC Image Analysis

1D

2D

3D

“curse of dimensionality”
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Two independent solutions pursued 
• Sparse linear algebra … efficient operation, ignores zero pixels (ZP) 
• Graph neural network … efficient data representation, eliminate ZP 

In-Grid Data 
(2D image)

Graph Data

Target

Target

TargetTarget

Target

Network prediction 
Track vs. Shower

Popular for social 
network analysis, 
node detection, 
categorization, 
clustering

Scalability Solution for Sparse Data 
Machine Learning for LArTPC Image Analysis
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Two independent solutions pursued 
• Sparse linear algebra … efficient operation, ignores zero pixels (ZP) 
• Graph neural network … efficient data representation, eliminate ZP 

Network prediction 
Track vs. Shower

In-Grid Data 
(2D image)

Graph Data

TargetTarget

Target
Popular for social 
network analysis, 
node detection, 
categorization, 
clustering

Scalability Solution for Sparse Data 
Machine Learning for LArTPC Image Analysis
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Two independent solutions pursued 
• Sparse linear algebra … efficient operation, ignores zero pixels (ZP) 
• Graph neural network … efficient data representation, eliminate ZP 
• Bottom line: both works great

Dense 
U-ResNet

Sparse 
U-ResNet

Process time 
(forward path) 4.5 s 6.6 ms
Memory 25.4 GB 50 MB
Train time 10 days 15 min.

• Using 3D data with 192^3 pixels 
• 2 events per GPU processing 
• Trained to reach 98% accuracy in the 

segmentation task (defined in paper) 
• 1/2 neurons compared to the published 

2D U-ResNet (code)

This is a game changer… 
Curse of dimensionality almost addressed = scalable to big data

Scalability Solution for Sparse Data 
Machine Learning for LArTPC Image Analysis

Preliminary
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Randomly picked event 
Prediction accuracy 99.93%

Scalability Solution for Sparse Data 
Machine Learning for LArTPC Image Analysis
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Randomly picked event 
Prediction accuracy 99.96%

Scalability Solution for Sparse Data 
Machine Learning for LArTPC Image Analysis
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Randomly picked event 
Prediction accuracy 99.72%

Scalability Solution for Sparse Data 
Machine Learning for LArTPC Image Analysis
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Randomly picked event 
Prediction accuracy 99.99%

Scalability Solution for Sparse Data 
Machine Learning for LArTPC Image Analysis
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Full Reconstruction Chain 
Machine Learning for LArTPC Image Analysis

+ +

Input Data

…

High-level 
Output

p

pepi

Outputs from the 
individual networks

Big Network

Point 
Prediction

Pixel 
Feature

Particle 
Clustering

Multi-task Deep Neural Network 
•  A cluster of many task-specific networks in 2D & 3D 

-  Vertex finding, clustering, particle ID, etc.



Input Step 3

π

p

p
e

Step 1 Step 2

Where we are…

Aiming to complete the full chain v.1 in early 2019, move to 
physics analysis applications

Full Reconstruction Chain 
Machine Learning for LArTPC Image Analysis

1. Space point (track edges) + pixel feature annotation 
2. Vertex finding + particle clustering 
3. Particle type + energy/momentum  
4. Hierarchy building
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