

Deep Neural Networks for Physics Data Reconstruction

Kazuhiro Terao SLAC National Accelerator Lab. October 24, 2018

Outline

- 1. Machine Learning & Computer Vision
- 2. Applications in neutrino/NDK physics detectors
- 3. Wrap-up

MicroBooNE

How to write an algorithm to identify a cat?

... very hard task ...

```
37 52 77 23 22 74 09 90 36 12 29 39 78 31 71 73 22 50 92 3
35 42 48 72 85 27 79 08 41 31 09 53 05 40 04 31 91 56 26 85
68 36 43 54 21 33 81 30 72 06 79 34 39 59 70 03 24 91 03 40
  60 10 25 54 71 24 50 87 88 47 68 31 42 09 77 40 07 26 73
18 55 38 73 50 47 22 21 88 78 02 95 19 59 60 93 73 40 67 99
54 07 67 38 55 51 26 81 43 66 89 69 92 94 50 08 94
71 95 38 46 63 07 66 68 41 49 34 33 66 76 68 97 53
04 28 93 88 02 97 92 41 21 54 24 33 97 10 33 47
95 05 34 86 46 18 95 65 62 28 62 95 35 84 18 22 81
69 18 34 46 77 60 28 62 16 61 72 19 88 14 43 23 64
76 15 68 89 13 74 48 90 12 59 02 31 14 34 77 47 04 69 99
70 01 05 77 88 20 63 57 41 50 68 04 30 62 09 67 61 86
36 76 07 95 11 52 04 91 58 59 30 09 46 95 31 71 43 26 48
81 01 86 71 64 31 49 99 60 63 97 61 43 86 36 53 82 31 00 52
63 78 18 10 79 39 77 28 39 17 76 81 93 35 02 78 10 30 35 75
        85 86 24 93 75 35 70 30 16 07 35 08 61 82 85 95 22
```

Taken from slides by Fei-Fei's TED talk

SLAC

Development Workflow for non-ML algorithms

1. Write an algorithm based on basic (physics) principles

A cat = collection of certain shapes

Development Workflow for non-ML algorithms

- 1. Write an algorithm based on basic (physics) principles
- 2. Run on simulation/data samples
- 3. Observe failures, implement fixes/heuristics
- 4. Iterate over 2 & 3 till a satisfactory level is achieved
- 5. Chain multiple algorithms as one algorithm, repeat 2, 3, and 4.

A cat = collection of certain shapes

9 ED ta

SLAC

Development Workflow for non-ML algorithms

- 1. Write an algorithm based on basic (physics) principles
- 2. Run on simulation/data samples
- 3. Observe failures, implement fixes/heuristics
- 4. Iterate over 2 & 3 till a satisfactory level is achieved
- 5. Chain multiple algorithms as one algorithm, repeat 2, 3, and 4.

Machine Learning

- Learn patterns from data
 - automation of steps 2, 3, and 4
- Chain algorithms & optimize
 - step 5 addressed by design
- "Deep Learning"
 - Revolutions in computer vision using deep neural networks

Natural Neural Network

Machine Learning Overview Simple neural network (perceptron)

The basic unit of a neural net is the *perceptron* (loosely based on a real neuron)

Takes in a vector of inputs (x). Commonly inputs are summed with weights (w) and offset (b) then run through activation.

Machine Learning Overview Simple neural network (perceptron)

Imagine using two features to separate cats and dogs

from wikipedia

$$\sigma(\vec{x}) = \begin{cases} \vec{w}_i \cdot \vec{x} + b_i & \vec{w}_i \cdot \vec{x} + b_i \ge 0 \\ 0 & \vec{w}_i \cdot \vec{x} + b_i < 0. \end{cases}$$

By picking a value for w and b, we define a boundary between the two sets of data

Machine Learning Overview Simple neural network (perceptron)

SLAC

What if we have a new data point?

from wikipedia

What if we have a new data point?

from wikipedia

We can add another perceptron to help (but does not yet solve the problem)

What if we have a new data point?

Another layer can classify based on preceding layer's output (of non-linear activation)

Machine Learning Overview Back to analyzing a cat "image..."

This part can be done with a classic (fully-connected) neural network

How can we extract "features" from "image"?

Convolutional Neural Network

Machine Learning Overview Convolutional Neural Network (CNN)

Machine Learning Overview Convolutional Neural Network (CNN)

Machine Learning Overview Convolutional Neural Network (CNN)

Machine Learning Overview Supervised Training of CNN

- CNNs are "feature extraction machine"
 - Consists of a "convolution layer" with "kernels"
 - A chain of linear algebra operations = "massively parallel"
 - ▶ Suited for acceleration using many-core hardwares (e.g. GPUs)
- CNNs seen as a geometrical data transformer

- CNNs are "feature extraction machine"
 - Consists of a "convolution layer" with "kernels"
 - A chain of linear algebra operations = "massively parallel"
 - ▶ Suited for acceleration using many-core hardwares (e.g. GPUs)
- CNNs seen as a geometrical data transformer

Machine Learning Overview Revolution with Deep Neural Networks

SLAC

2012

Public image categorization competition w/ 1.2M images, 1000 object categories.

"Deep" convolutional neural network broke the past record by a large margin

ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky
University of Toronto
kriz@cs.utoronto.ca

Ilya Sutskever
University of Toronto
ilya@cs.utoronto.ca

Abstract

Geoffrey E. Hinton
University of Toronto
hinton@cs.utoronto.ca

> 30,000 citations

We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overfitting in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

Machine Learning Overview Revolution with Deep Neural Networks

"girl in pink dress is jumping in air."

a woman is playing tennis on a tennis court

Machine Learning in Computer Vision

High-Precision Detector Data Analysis

Image Credit Fermilab Today http://news.fnal.gov/2018/03/when-it-rains-2/

Physics Applications Image Classification Application

SLAC

NOvA Neutrino Event Classifier

Neutrino event topology classification with 2D images

"Inception Module"

A convolution with multiple sized kernels

Input "images"

Physics Applications Beyond image classification: pixel segmentation SLAC

Physics Applications Beyond image classification: pixel segmentation SLAC

Physics Applications Beyond image classification: pixel segmentation SLAC

See MicroBooNE ML Talk!

MicroBooNE Paper arXiv:1808.07269

Physics Applications Drawbacks of supervised training

What can we do about imperfect simulation?

- **Problematic**: the "signal distribution" learnt by the algorithm may be different in two domains!
- Mitigation techniques in ML domain?
 - Can try CNN to "locate" where it is
 - Can try CNN to "fix" the discrepancy
 - Can try a training technique to minimize the effect

What can we do about imperfect simulation?

- **Problematic**: the "signal distribution" learnt by the algorithm may be different in two domains!
- Mitigation techniques in ML domain? See Minerva
 - Can try CNN to "locate" where it is
 - Can try CNN to "fix" the discrepancy
 - Can try a training technique to minimize the effect

Maximize the loss for discriminate data vs. simulation, feature extractors are penalized to key on simulation specific information

Minerva Paper arXiv:1808.08332

Domain-Adversarial Training of Neural Networks J. Mach. Learn. Res. 17 (2016)

Physics Applications DNNs for full reconstruction on "Big Data"

SLAC

Full reconstruction (multi-task network)

- 3D particle clustering + type ID
- Detection of vertex, particle "start/end"

Sparse Big Data

• Locally dense, but overall <0.1% occupancy!

Physics Applications Interested in? Let us work together!

DeepLearnPhysics (deeplearnphysics.org)

- **Collaboration** for ML technique R&D
 - ~70 members including HEP exp/theory, nuclear physics, BES (LCLS, SSRL), Cryo-EM, accelerator, AI/CS community
- Open source software/tools, containers, open data
 - our framework to collaborate & share reproducible results
- Community building
 - Workshops (done at many universities/national labs)
 - Sharing opportunities (talks, jobs/fundings, etc.)

Thank you! for your attention :)

Inside

me

Take-away messages...

1. CNNs are image feature extractors

- Image classification & Object detection in an image
- Pixel segmentation & Clustering
- 3. DNNs are used in physics analysis & reconstruction tasks
- 4. DNNs/ML are becoming more popular, and we're learning... (join DLP!)

More Exciting Talks to Follow!

Things avoided in my talk but popular...

- Graph neural network
 - Emerged from social network analysis, very popular
- Generative models
 - Including GANs (e.g. "Fast simulation" in LHC)
- Recurrent neural network
 - Sequence analysis (language as well as physics!)
- Hyper-parameter optimizations
- ML on distributed systems (HPCs)
- Quantum X (ML, neural network, algorithms, etc)
 - No idea, please don't ask me about this

Glossaries

Convolutional Neural Networks (CNNs)

- A convolution filter (neuron) applies a small kernel to input data, and produces a feature-map.
- A convolution layer consists of multiple filters, and the output of a layer is another "image" matrix data with many channels
- CNNs are typically made of successive down-sampling and convolution operations, and "many" layers = "deep" CNNs.

Applications

• Computer vision: image classification, object detection, semantic segmentation, clustering

Backup Slides

Physics Applications Beyond image classification: object detection

SLAC

Object Detection

- Train CNN to regress "object location & size"
- "sliding windows" to find "regions of interest"
 - With spatially contracted, feature-enhanced data, detection is much faster!

Physics Applications Beyond image classification: object detection

Object Detection

- Train CNN to regress "object location & size"
- "sliding windows" to find "regions of interest"
 - With spatially contracted, feature-enhanced data, detection is much faster!

See MicroBooNE Paper!

Physics Applications Beyond image classification: pixel segmentation

Image context analysis

"Pose" detection

Convolutional Neural Network

~ How does it work? ~

"Classical" Neural Net

Fully-Connected, Feed-forward, Multi-Layer Perceptrons

A traditional neural network consists of a stack of layers of such neurons where each neuron is *fully connected* to other neurons of the neighbor layers

"Classical" Neural Net

... is not ideal for image classification ...

Image classification

- What is input neurons?
 - Every pixel value
- How many weights?
 - # of pixels in an image!
- Fully connected?
 - translation variant!

CNN introduce a *limitation* by forcing the network to look at only local, translation invariant features

$$f_{i,j}(X) = \sigma(W_i \cdot X_j + b_i),$$

Activation of a neuron depends on the element-wise product of 3D weight tensor with 3D input data and a bias term

- Translate over 2D space to process the whole input
- Neuron learns translation-invariant features
 - Suited for a "homogeneous" detector like LArTPC
- Output: a "feature-enhanced" image (feature map)

Toy visualization of the CNN operation

Toy visualization of the CNN operation

Toy visualization of the CNN operation

Feature map visualization example

• https://www.youtube.com/watch?v=AgkfIQ4IGaM

Neuron concerning face

Neuron loving texts

(and don't care about your face)

Goal: extract features to give "single label" to an image

- 1. Convolution operation
- 2. Down-sampling

Series of convolutions + down-sampling

Goal: extract features to give "single label" to an image

1. Convolution operation

2. Down-sampling

"Written Texts"

"Written Texts' feature map

"Human Face" feature map

Goal: extract features to give "single label" to an image

- 1. Convolution operation
- 2. Down-sampling

Series of convolutions + down-sampling

Goal: extract features to give "single label" to an image

1. Convolution operation 2. Down-sampling

"Written Texts" feature map

"Human Face" feature map

How SSNet Works

Goal: recover precise, pixel-level location of objects

1. Up-sampling

- Expand spatial dimensions of feature maps

2. Convolution

- Smoothing (interpolation) of up-sampled feature maps

DNN for LArTPC Data Reconstruction

Scalable ML Algorithms Machine Learning for LArTPC Image Analysis

SLAC

Scalable software is critical

- **Big detector** = **big data** ... can we run a data production?
- Combining more algorithms = more computing resource (CR)

Challenges for ML on LArTPC data

- ML in computer vision = linear algebra on matrix data
- CR for scales by data size = power law (^2 for 2D, ^3 for 3D)
- LArTPC data is unique: locally dense but generally very sparse
 - Only ~1% of pixels are non-zero in 2D images, and ~0.1% in 3D volumetric data
 - "Trajectory" is really 1D ... non-zero pixel count does not scale by power law!

"curse of dimensionality"

3D

57

SLAC

Two independent solutions pursued

- Sparse linear algebra ... efficient operation, ignores zero pixels (ZP)
- Graph neural network ... efficient data representation, eliminate ZP

SLAC

Two independent solutions pursued

- Sparse linear algebra ... efficient operation, ignores zero pixels (ZP)
- Graph neural network ... efficient data representation, eliminate ZP

SLAC

Two independent solutions pursued

- Sparse linear algebra ... efficient operation, ignores zero pixels (ZP)
- Graph neural network ... efficient data representation, eliminate ZP
- Bottom line: both works great

	Dense U-ResNet	Sparse U-ResNet
		01
Process time (forward path)	4.5 s	6.6 ms
Memory	25.4 GB	50 MB
Train time	10 days	15 min.

- Using 3D data with 192³ pixels
- 2 events per GPU processing
- Trained to reach 98% accuracy in the segmentation task (defined in paper)
- 1/2 neurons compared to the published
 2D U-ResNet (code)

This is a game changer...

Curse of dimensionality almost addressed = scalable to big data

SLAC

Randomly picked event Prediction accuracy 99.93%

SLAC

Full Reconstruction Chain Machine Learning for LArTPC Image Analysis

SLAC

Multi-task Deep Neural Network

- A cluster of many task-specific networks in 2D & 3D
 - Vertex finding, clustering, particle ID, etc.

Full Reconstruction Chain Machine Learning for LArTPC Image Analysis

SLAC

Where we are...

- ☑ 1. Space point (track edges) + pixel feature annotation
- 2. Vertex finding + particle clustering
- ☑ 3. Particle type + energy/momentum
- 4. Hierarchy building

Aiming to complete the full chain v.1 in early 2019, move to physics analysis applications