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MINERvVA Experiment

e MINERVA is a dedicated neutrino-nucleus experiment situated at
Fermilab’s NuMI Beam along with other two experiments MINOS and
NOvVA

e A precise understanding of the A-dependence of the neutrino-nucleus
cross section is important to reduce systematic uncertainties in the
measurements of oscillation experiments.

e MINERVA having different nuclear targets (iron, carbon, lead, water,
helium, scintillator) and excellent tracking ability, is able to provide
high precision measurement of neutrino interactions on various nuclei
in the 1-10 GeV energy range.
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MINERvVA Detector
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e Consists of a core of scintillator strips surrounded
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¢ MINOS Near Detector for muon charge and
momentum
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Problem with vertex finding: motivation behind

ML technique

e With the increase of our beam energy, there is an increase in the hadronic
showers near the event of interactions.

e Cause more difficulty in vertexing with increase rates of failure in getting

the correct vertex position
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ML Approach To Determine Event Vertex

- Goal: Find the location of the event vertex

-Treat the localization as a classification problem

4 tracker modules between each target
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Fe: 323 kg Fe: 323 kg C: 166 kg
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Pb: 121 kg

Fiducial Mass

Make images for
three different views
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NUC. TARGET 5
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Pb: 135 kg
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Fiducial Mass

625 kg Hz0 Pb: 228 kg @ Target 1 2 3 4 5

Fiducial: within 85 cm apothem of beam spot

DNN(Convolutional
neural network)

Prediction at which segment
an interaction occurs
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Convolutional neural network (CNN)

Stacking layers of convolutions leads from geometric / spatial representation
to semantic representation:

Convolutions
t Classifier
j f {

/ "Semantics"
"Space & Shapes” /

X view u view vV view

NV
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We have three separate
convolutional towers that
look at each of the X, U,
and V images.
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Track-based approach vs ML approach
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Signal purity has been improved by the factor of 2-3 using ML technique
compared to track based approach
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Domain Adversarial Neural Network (DANN)

http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1505.07818

CNN:

e Train with labeled data: in our case it is Monte Carlo
e Test with unlabeled data: in our case it is real data

Limitation:

Labeled simulated data for training >> unlabeled real data for testing

Our models are not perfect ->domain discrepancies arises

Need strategy to reduce any biases in the algorithm that may come
from training our models in one domain and applying them in another

@NN comes into t@
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http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1505.07818

DANN

Train from the labeled source domain (MC ) and unlabeled target

domain (real data)

v

Goal to achieve the features:

1) discriminative for the main learning task on the source domain
2) indiscriminate with respect to the shift between domains

X view U view

-
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V view

7

This adaptation behavior
can be achieved by
adding a gradient

reversal layer with few
standard layers

N

NNN 2018, Vancouver, Canada


http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1505.07818
http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1505.07818

DANN

e Two classifiers into the network:

Label predictor: output
works internally
e Minimize the loss of the label classifier: network can predicts the
input level

e Maximize the loss of the domain classifier: network can not distinguish
between source and target domain

The network develops an insensitivity to features that are present in
one domain but not the other, and train only on features that are
common to both domains

http://adsabs.harvard.edu/cgi-bin/bib_ query?arXiv:1505.07818
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http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1505.07818

How to test DANN ?

e Find source and target with distinct features.

-our source and target domains may be too similar for the domain classifier to be
able to distinguish between them.

e We train with Monte Carlo (MC) events and use different MC as target

e We tried by few ways to get the target sample having different features
than source: changing the flux, physics model, kinematic division etc.

Anushree Ghosh,UTFSM,Chile 12 NNN 2018, Vancouver, Canada



Final state interaction(FSI) On/Off

e We assume that “FSI 1s on” in real world and so we turned on FSI in our

testing sample

Anushree Ghosh,UTFSM,Chile
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sample . partner Testing
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The expectation: though
model is trained “out of
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similar performance as
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\
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J
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DANN helps to recover the domain information
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Summary

e We see improvement factor of ~2-3 with DNN based
reconstruction over track-based reconstruction

e We simulated with different FSI behavior and we saw the cross-domain
performance degradation. However, by using DANN to restrict the
feature extraction only to features in both domains we can train a
domain-invariant classifier

e MINERVA is expanding ML infrastructure in other studies like hadron
multiplicity, particle identification and we will use DANN to reduce
the bias coming from the physics model.
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From MINERvVA Collaboration:

1 5 | . ) 4 ‘
i - SPA 8 S\
}‘ ! : s T 7, 7 "o

_‘..‘ »_._‘ "« = : _ 2! \ AN\

) S ' ’ /m
L e R, s o,

o e —— e Sy TE S

A~ s : xosl

Anushree Ghosh, UTFSM, Chile 16

NNN 2018, Vancouver, Canada



Backup slides
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NuMI Beam
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Neutrinos
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e NuMI beamline currently running with increased beam energy mode which
peaks at ~6 GeV (ME mode).

e We have taken ~12E20 POT in neutrino mode and currently taking data in

anti-neutrino mode.

e About factor of 3 increase from LE data at 3.9E20 POT!

J.A. Formaggio, G. Zeller, Reviews of Modern Physics, 84 (2012)
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e Higher statistics yields improve
comparisons across nuclei

e The peak of energy now moves to
the DIS-rich kinematic region.
Access to expanded kinematics
and nuclear structure functions.
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Network structure
e Each view represents a different angle of the interaction, hence, a pixel

location in one view does not correspond to that same pixel location in
another view

e So, we have three separate convolutional towers that look at each of the X,
U, and V images.

e Each tower consists of four iterations of convolution and max pooling layers
with ReLUs acting as the non-linear activations and after that there is a
fully connected layer

e The out of three views are concatenated and fed into another fully
connected layer .This is the input to the final fully connected layer with
11(67) output -> input to the softmax layer.

¢ We use non-square kernels, they are much larger along the transverse
direction than along the z direction-> localization information contained
directly in the energy distribution along Z. So, we allow the images to shrink
along the transverse dimension but largely preserved the image size along
the Z axis. Also, we pooled the tensor elements together only along the
transverse axis, not along the z axis.
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DNN vertex Z residual: True vertex Z - Z center of predicted plane

Track based vertex Z residual: True vertex Z - reconstructed vertex Z

N Events /1.7 cm

Target 2

MINERVA Work In-Progress

7

DNN, Mean = -1.76
DNN, RMS = 12.77
Track-based, Mean = -8.83

Track-based, RMS = 50.98

-100

300

Vertex Z Residual (mm)
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Classitying events
in plane number
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Confusion matrix

Row normalized Tracking

Reconstructed z-segment
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Classifying events
in 11 segments
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classifying events in 11 segments

llizzte iRl R Norragllselzc{jol\évvent Improvement+
Target Netrmellzee! ISHErL Couls Counts+stat error stat error (%)
+stat error (%) (%)
Upstream of Target 1 41.11+£0.95 68.1+0.0 27/+1.14
1 32.6+0.20 94.4+0.13 11.7+0.3
Between target 1 and 2 80.8+0.46 82.1+0.37 1.3+0.6
2 77.9+0.27 94.0+0.13 16.1+0.3
Between target 2 and 3 80.1+0.46 34.8+0.34 4.7+0.6
3 /8+0.3 92.4+0.10 14.4+0.34
Between target 3 and 4 90.5+0.2 93.0+0.14 2.5+0.25
4 /8.3+0.35 39.6+0.22 11.3+0.42
Between target 4 and 5 54 3+1.12 51.6+0.95 -2.7+£0.15
O 31.6+0.3 91.2+0.18 9.5+0.34
Downstream of target 5 99.6+0.01 99.3+0.13 -0.3+0.02

27



