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MINERvA Experiment

• MINERvA is a dedicated neutrino-nucleus experiment situated at   
    Fermilab’s NuMI Beam along with other two experiments MINOS and 
    NOvA

• A precise understanding of the A-dependence of the neutrino-nucleus  
     cross section is important to reduce systematic uncertainties in the  
     measurements of oscillation experiments. 

• MINERvA having different nuclear targets (iron, carbon, lead, water,  
    helium, scintillator) and excellent tracking    ability , is able to provide  
    high precision measurement of neutrino interactions on various nuclei 
    in the 1-10 GeV energy range. 
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MINERvA Detector

• Consists of a core of scintillator strips surrounded  
     by ECAL and HCAL

• MINOS Near Detector for muon charge and  
     momentum
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true vertex

reconstructed vertex

• With the increase of our beam energy,  there is  an increase in the hadronic 
showers near the event of interactions. 

• Cause more difficulty in vertexing with increase rates of failure in getting 
the correct vertex position

Problem with vertex finding: motivation behind 
ML technique 
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• Goal: Find the location of the event vertex

ML Approach To Determine Event Vertex

G. Perdue | PDS group meeting 2016 / March / 313

Identifying events in 11 "segments"

Target 1 2 3 4 5

Segment 0 2 4 6 7 101 3 5 8 9
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Make images for 
 three different views

DNN(Convolutional  
neural network)

Prediction at which segment  
an interaction occurs

-Treat the localization as a classification problem

• Different targets built with combinations of different materials

Nuclear Targets
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Nuclear Target Region"

Jorge G, Morfín - Fermilab 28 

Fiducial: within 85 cm apothem of beam spot 
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NUC. TARGET 1 
Fiducial Mass  
Fe: 323 kg 
Pb: 264 kg 

NUC. TARGET 2 
Fiducial Mass  
Fe: 323 kg 
Pb: 266 kg 

NUC. TARGET 3  
Fiducial Mass   
C: 166 kg 
Fe: 169 kg 
Pb: 121 kg 

NUC. TARGET 4  
Fiducial Mass  
Pb: 228 kg 

NUC. TARGET 5  
Fiducial Mass 
Fe: 161 kg 
Pb: 135 kg 

WATER TARGET  
Fiducial Mass    
625 kg H20 

1 2 3 4 5 

Helium Target  
Fiducial Mass  
0.25 tons  

4 tracker modules between each target 

CHCarbon Iron Lead
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Convolutional neural network (CNN)
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Stacking layers of convolutions leads from geometric / spatial representation 
to semantic representation:

Convolutional 
unt

Label predictor

x view u view v view

Convolutional 
unt

Convolutional 
unt

We have three separate 
convolutional towers that 
look at each of the X, U, 
and V images.



Anushree Ghosh,UTFSM,Chile NNN 2018, Vancouver, Canada 8

Track-based approach vs ML approach

Signal purity has been improved by the factor of 2-3 using ML technique 
compared to track based approach 
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Labeled simulated data for training >> unlabeled real data for testing

• Train with labeled data: in our case it is Monte Carlo
• Test with unlabeled data: in our case it is real data

Limitation:

Need strategy to  reduce any  biases  in  the algorithm  that  may  come  
from training  our  models  in  one  domain   and  applying  them  in  another

Here DANN comes into the picture
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Domain Adversarial Neural Network (DANN)

CNN:

http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1505.07818

Our  models are  not  perfect ->domain discrepancies arises

http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1505.07818
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DANN
 Train from the labeled source domain (MC ) and unlabeled target 
domain (real data)

Goal to achieve the features:  
1) discriminative for the main learning task on the source domain     
2) indiscriminate with respect to the shift between domains

 

Convolutional 
unt

Convolutional 
unt

Convolutional 
unt

Label predictor

Inner product

Domain classifier

This adaptation behavior 
can be achieved by 
adding a gradient 
reversal layer with few 
standard layers 

X view U view V view

http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1505.07818
http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1505.07818
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DANN
• Two classifiers into the network: 

Label predictor: output 
Domain classifier: works internally

• Minimize the loss of the label classifier: network can predicts the  
     input level 
• Maximize the loss of the domain classifier: network can not distinguish 

between source and target domain

The network develops an insensitivity to features that are present in 
one domain but not the other, and train only on features that are 
common to both domains

http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1505.07818

http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1505.07818
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How to test DANN ?

• Find source and target  with distinct features.  

• We tried by few ways to get the target sample having different features 
    than source: changing the flux, physics model, kinematic division etc.
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-our source and target domains may be too similar for the domain classifier to be  
  able to distinguish between them.

• We train with Monte Carlo (MC) events and use different MC as target 
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Final state interaction(FSI) On/Off
• We assume that “FSI is on” in real world and so we turned on FSI in our  
     testing sample

Training 
sample 
(Source 
domain)

DANN 
partner 
(target 

domain)

Testing 
sample Model

FSI on (1.2M) N/A FSI on In domain

FSI off(1.2M) N/A FSI on out of domain

FSI off(1.2M) FSI off(1.2M) FSI on
Out of domain with 

in domain DANN 
partner

The expectation: 
CNN in domain 
will perform better 
than CNN out of 
domain.

The expectation:  though 
model is trained  “out of  
domain”, it would show the 
similar performance as 
“CNN in domain” since we 
consider “in domain” DANN  
    partner. 
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Green curve: 
• Perform worse than red curve as the 

sample size is reduced by half 
• Perform better than than black curve as 

it has information from the correct 
domain 

Red curve: Adding a DANN partner to the 
model trained in the out-of domain we are 
able  to recover the performance of the 
model natively trained in the correct domain

DANN helps to recover the domain information

Source 
domain

Target 
domain

Testing 
sample Model

FSI on 
(1.2M) N/A FSI on In domain

FSI 
off(1.2M) N/A FSI on out of domain

FSI 
off(1.2M) FSI off FSI on

Out of domain with 
in domain DANN 

partner

FSI 
off(0.6M)

FSI 
off(0.6M) FSI on

Out of domain with 
in domain DANN 

partner(half sample)
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Summary

• We see improvement factor of ~2-3 with DNN based  
     reconstruction over track-based reconstruction

• MINERvA is expanding ML infrastructure  in other studies like hadron 
multiplicity, particle identification and we will use DANN to reduce 
the bias coming from the physics model. 

• We simulated with different FSI behavior and we saw the cross-domain 
performance degradation. However, by using DANN to restrict the 

     feature extraction only to features in both domains we can train a  
     domain-invariant classifier
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Thank you! 
From MINERvA Collaboration:
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Backup slides
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NuMI Beam
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ν

Muon monitors

120 
GeV proton beam  

from 
the main injector on 

Focus  
π+ and Κ+  (π- 

and Κ-) to get 
the 𝛎𝝻  

( v̅µ )beam

Beam 
energy can be 

changed by moving 
the horns with 
respect to each 

other

Rock removes 
muon from beam

Neutrinos
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• NuMI beamline currently running with increased beam energy mode which 
peaks at ~6 GeV (ME mode). 

• We have taken ~12E20 POT in neutrino mode and currently taking data in 
anti-neutrino mode. 

• About factor of 3 increase from LE data at 3.9E20 POT!

NuMI beam: medium energy regime
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• Higher statistics yields improve 
comparisons across nuclei 

• The peak of energy now moves to 
the DIS-rich kinematic region. 
Access to expanded kinematics 
and nuclear structure functions.

MINERvA, DUNE, NOvA

Charged Current Interactions

8

Resonant pion 

Deep inelastic 

Overview Charged Current Interactions

Minerba Betancourt

Neutrino Cross SectionsSam Zeller, Low Energy Neutrino Cross Sections, NuFact 06/10/03 8

Past �⌫ Measurements

• How well have we measured low energy ⌫ �’s?
Rely on past measurements for this knowledge

• Along the way, point out how good our current
theoretical understanding is

• Review the status of past
measurements of �⌫ at
E⌫ ⇠ 1 GeV:

,! Quasi–elastic scattering

,! Resonance production
(CC and NC single ⇡)

,! Coherent ⇡ production

,! Multi ⇡ production
(small � but can feed down)

,! ⌫ production of strange

Quasi-elastic scattering (QE)

Resonance production (RES)

Deep Inelastic scattering (DIS) 

14

S. Zeller, UPitt workshop 12/06/12 

Current Knowledge 
6 

neutrino 

•  σν’s are not particularly well-constrained in this intermediate E region  
  (situation is embarassingly worse for NC and for ν ) 

antineutrino 

… the situation has been improving 
(with the availability of new higher statistics data) 

NOvA 
T2K 

LBNE !
CNGS 

atmospheric !

J. A. Formaggio, G. Zeller, Reviews of Modern Physics, 84 (2012)

9

T2K NOvA
DUNE MINERvADUNE

Quasi-elastic 

QE

RES

DIS MINERvA
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Network structure
• Each view represents a different angle of the interaction, hence, a pixel  
     location in one view does not correspond to that same pixel location in  
     another view 
• So, we have three separate convolutional towers that look at each of the X, 

U, and V images. 

• Each tower consists of four iterations of convolution and max pooling layers 
with ReLUs acting as the non-linear activations and after that there is a 
fully connected layer 

• The out of three views are concatenated and fed into another fully 
connected layer .This is the input to the final fully connected layer with 
11(67) output -> input to the softmax layer.  

• We use non-square kernels, they are much larger along the transverse 
direction than along the z direction-> localization information contained 
directly in the energy distribution along Z. So, we allow the images to shrink 
along the transverse dimension but largely preserved the image size along 
the Z axis. Also, we pooled the tensor elements together only along the  

    transverse axis, not along the z axis. 
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Data

Convolution Unit

Convolution Unit

Convolution Unit

Convolution Unit

Fully Connected

Loss
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InnerProduct
Outputs: 11

Softmax w/ Loss
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Data

Convolution Unit

Convolution Unit

Convolution Unit

Convolution Unit

Fully Connected

Label Predictor Domain Classifier
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DNN vertex Z residual: True vertex Z - Z center of predicted plane

Track based vertex Z residual: True vertex Z - reconstructed vertex Z
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Classifying events  
in plane number
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Confusion matrix
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Target
Track-Based Row 

Normalized Event Counts
+stat error (%)

DNN Row 
Normalized Event 
Counts+stat error 

(%)

Improvement+
stat error (%)

Upstream of Target 1 41.11±0.95 68.1±0.6 27±1.14
1 82.6±0.26 94.4±0.13 11.7±0.3

Between target 1 and 2 80.8±0.46 82.1±0.37 1.3±0.6
2 77.9±0.27 94.0±0.13 16.1±0.3

Between target 2 and 3 80.1±0.46 84.8±0.34 4.7±0.6
3 78±0.3 92.4±0.16 14.4±0.34

Between target 3 and 4 90.5±0.2 93.0±0.14 2.5±0.25
4 78.3±0.35 89.6±0.22 11.3+0.42

Between target 4 and 5 54.3±1.12 51.6±0.95 -2.7±0.15
5 81.6±0.3 91.2±0.18 9.5±0.34

Downstream of target 5 99.6±0.01 99.3±0.13 -0.3±0.02

classifying events in 11 segments


