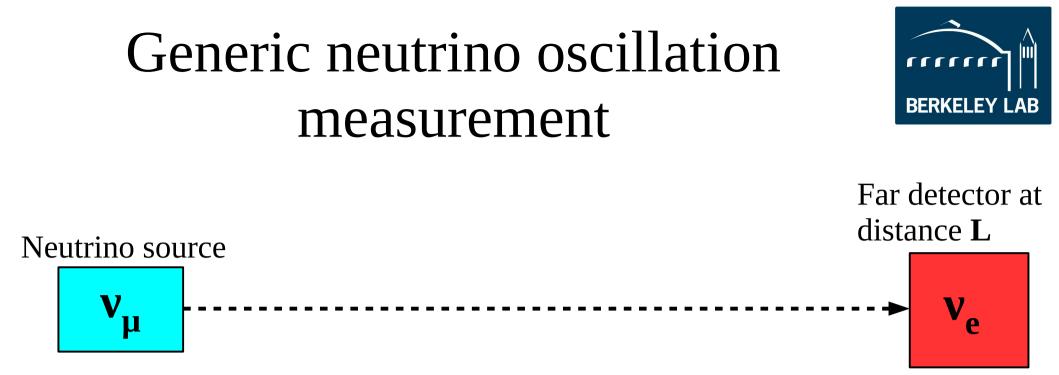
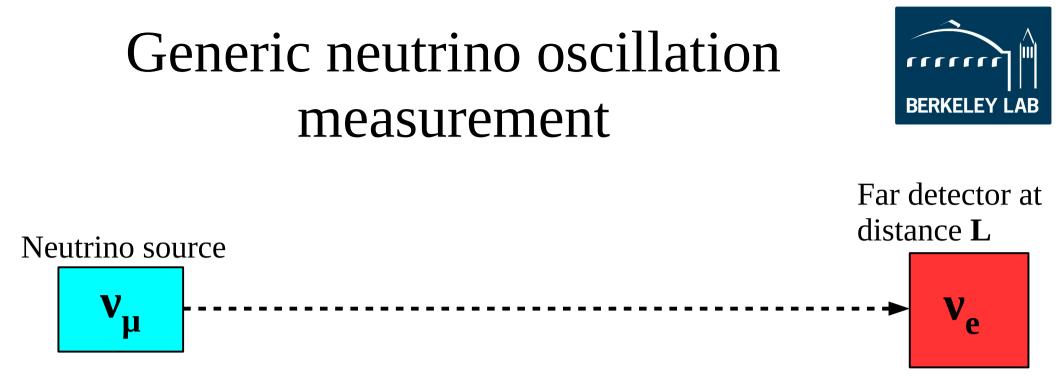
Neutrino interaction uncertainties in long-baseline oscillation experiments

Chris Marshall Lawrence Berkeley National Laboratory NNN2018, Vancouver 2 November, 2018



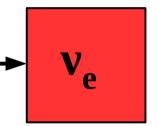
Talks this afternoon


- This afternoon we will hear talks from experiments on their experience with systematic uncertainties, especially due to neutrino cross sections:
 - **DUNE** analysis & systematics
 - **Hyper-K** systematics
 - **MicroBooNE** analysis & systematics
 - Coffee-related systematics
 - **T2K** neutrino interaction uncertainties
 - **NOvA** systematics
 - **MINERvA** interaction modeling uncertainties
- Goal of this talk is to introduce the topic of cross section uncertainties and why they matter

2018-11-02

1) Measure flux, $\Phi(E_v)$ of v_e at far detector at distance **L** 2) Compare to predicted flux $\Phi(E_v)$ of v_{μ} at neutrino source 3) Party

$$P(\nu_{\mu} \to \nu_{e}) = \frac{\Phi_{\nu_{e}}(E_{\nu}, L)}{\Phi_{\nu_{\mu}}(E_{\nu}, 0)}$$


- 1) Measure reconstructed energy spectrum at far detector 2) Use models to infer v_e flux at far detector
- 3) Much less fun party where you are worried about all the mistakes that might be in your models

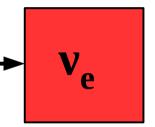
$$N_{\nu_e}^{far}(E_{reco}) = \int \Phi_{\nu_e}(E_{\nu}, L) \times \sigma_{\nu_e}(E_{\nu}) \times \epsilon^{far}(E_{\nu}) \times \mathbf{D}_{\nu_e}^{far}(E_{\nu} \to E_{reco}) dE_{\nu}$$

Generic neutrino oscillation measurement

Far detector at distance **L**

Neutrino source

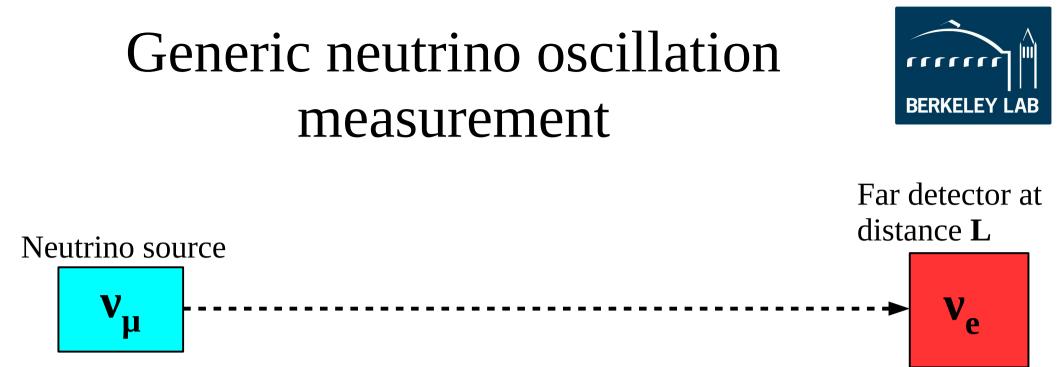
 Vµ


To get flux $\Phi(E_v)$, you must first understand 1) v_e -nucleus cross sections as a function of E_v

$$N_{\nu_e}^{far}(E_{reco}) = \int \Phi_{\nu_e}(E_{\nu}, L) \times \sigma_{\nu_e}(E_{\nu}) \times \epsilon^{far}(E_{\nu}) \times \mathbf{D}_{\nu_e}^{far}(E_{\nu} \to E_{reco}) dE_{\nu}$$

Generic neutrino oscillation measurement

Far detector at distance **L**

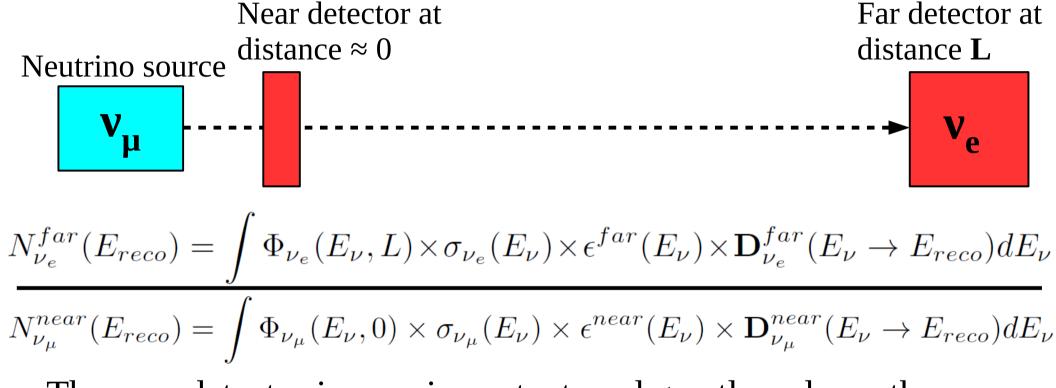


To get flux $\Phi(E_v)$, you must first understand 1) v_e -nucleus cross sections as a function of E_v 2) Detector acceptance

$$N_{\nu_e}^{far}(E_{reco}) = \int \Phi_{\nu_e}(E_{\nu}, L) \times \sigma_{\nu_e}(E_{\nu}) \times \epsilon^{far}(E_{\nu}) \times \mathbf{D}_{\nu_e}^{far}(E_{\nu} \to E_{reco}) dE_{\nu}$$

Neutrino source

ν_μ


To get flux $\Phi(E_v)$, you must first understand 1) v_e -nucleus cross sections as a function of E_v 2) Detector acceptance

3) Relationship between E_v and your detector observable

$$N_{\nu_e}^{far}(E_{reco}) = \int \Phi_{\nu_e}(E_{\nu}, L) \times \sigma_{\nu_e}(E_{\nu}) \times \epsilon^{far}(E_{\nu}) \times \mathbf{D}_{\nu_e}^{far}(E_{\nu} \to E_{reco}) dE_{\nu}$$

But I have a near detector! Do I really need to worry about this?

The near detector is very important, and greatly reduces the effect of uncertain flux and cross section

But many important effects do **not** cancel in a FD/ND ratio

2018-11-02

Differences are corrected using a model

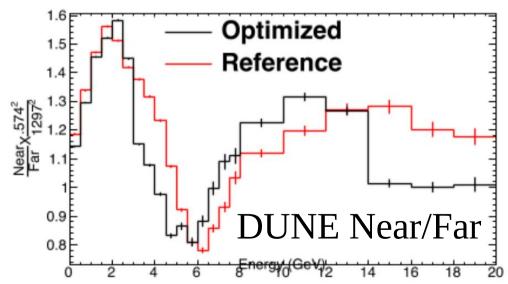
$$N_{\nu_{e}}^{far}(E_{reco}) = \int \Phi_{\nu_{e}}(E_{\nu}, L) \times \sigma_{\nu_{e}}(E_{\nu}) \times \epsilon^{far}(E_{\nu}) \times \mathbf{D}_{\nu_{e}}^{far}(E_{\nu} \to E_{reco}) dE_{\nu}$$
$$N_{\nu_{\mu}}^{near}(E_{reco}) = \int \Phi_{\nu_{\mu}}(E_{\nu}, 0) \times \sigma_{\nu_{\mu}}(E_{\nu}) \times \epsilon^{near}(E_{\nu}) \times \mathbf{D}_{\nu_{\mu}}^{near}(E_{\nu} \to E_{reco}) dE_{\nu}$$

• Extrapolation from near detector measurement to far detector prediction is done with a model, which is tuned to external data

r

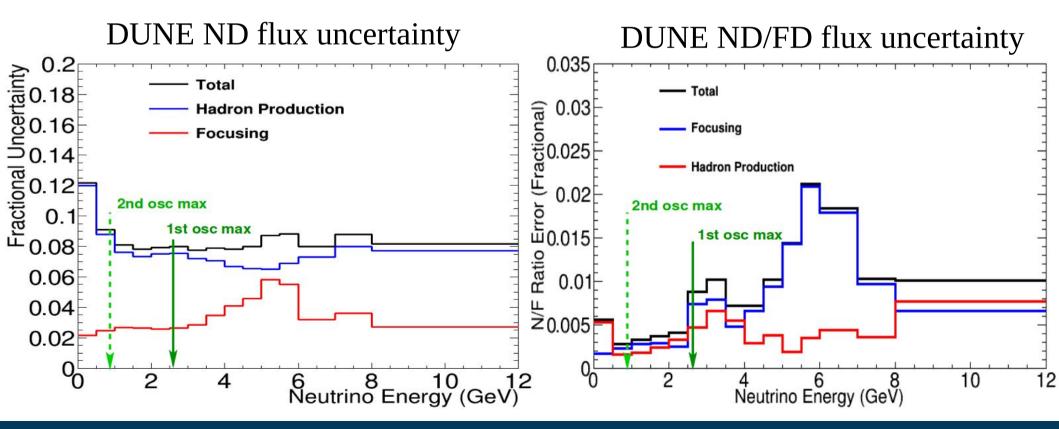
- Cross section uncertainties can be reduced by
 - Putting better, more complete models into event generators
 - Making more/better measurements of neutrino cross sections

UNIVERSAL NEUTRINO GENERATOR & GLOBAL FIT


2018-11-02

Near vs. Far flux differences

$$N_{\nu_{e}}^{far}(E_{reco}) = \int \Phi_{\nu_{e}}(E_{\nu},L) \times \sigma_{\nu_{e}}(E_{\nu}) \times \epsilon^{far}(E_{\nu}) \times \mathbf{D}_{\nu_{e}}^{far}(E_{\nu} \to E_{reco}) dE_{\nu}$$
$$N_{\nu_{\mu}}^{near}(E_{reco}) = \int \Phi_{\nu_{\mu}}(E_{\nu},0) \times \sigma_{\nu_{\mu}}(E_{\nu}) \times \epsilon^{near}(E_{\nu}) \times \mathbf{D}_{\nu_{\mu}}^{near}(E_{\nu} \to E_{reco}) dE_{\nu}$$


- Solid angle effects introduce significant differences in the flux at the near and far detectors
- Affects energy dependence of the rest of the equation
- And that's without taking oscillations into account

For DUNE, ND/FD flux differences have ~0.3-0.8% uncertainty

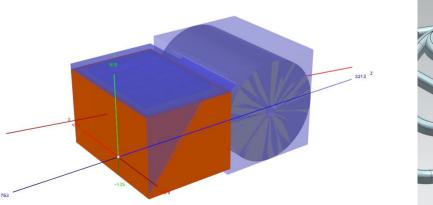
$$N_{\nu_{e}}^{far}(E_{reco}) = \int \Phi_{\nu_{e}}(E_{\nu},L) \times \sigma_{\nu_{e}}(E_{\nu}) \times \epsilon^{far}(E_{\nu}) \times \mathbf{D}_{\nu_{e}}^{far}(E_{\nu} \to E_{reco}) dE_{\nu}$$
$$N_{\nu_{\mu}}^{near}(E_{reco}) = \int \Phi_{\nu_{\mu}}(E_{\nu},0) \times \sigma_{\nu_{\mu}}(E_{\nu}) \times \epsilon^{near}(E_{\nu}) \times \mathbf{D}_{\nu_{\mu}}^{near}(E_{\nu} \to E_{reco}) dE_{\nu}$$

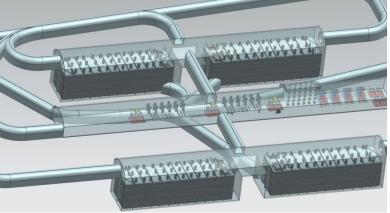
2018-11-02

Near and far
cross section differences

$$N_{\nu_{e}}^{far}(E_{reco}) = \int \Phi_{\nu_{e}}(E_{\nu}, L) \times \sigma_{\nu_{e}}(E_{\nu}) \times \epsilon^{far}(E_{\nu}) \times \mathbf{D}_{\nu_{e}}^{far}(E_{\nu} \to E_{reco}) dE_{\nu}$$

$$N_{\nu_{\mu}}^{near}(E_{reco}) = \int \Phi_{\nu_{\mu}}(E_{\nu}, 0) \times \sigma_{\nu_{\mu}}(E_{\nu}) \times \epsilon^{near}(E_{\nu}) \times \mathbf{D}_{\nu_{\mu}}^{near}(E_{\nu} \to E_{reco}) dE_{\nu}$$


- For a v_e appearance measurement, ND is sensitive to v_μ cross sections while FD is sensitive to v_e cross sections
- Differences in lepton mass lead to different allowed phase space for v_{μ} CC and v_{e} CC interactions the cross section in the additional v_{e} CC phase space is completely unconstrained by ND data
- ND and FD may have different target material (i.e. T2K FGD), and measure cross sections on different nuclei



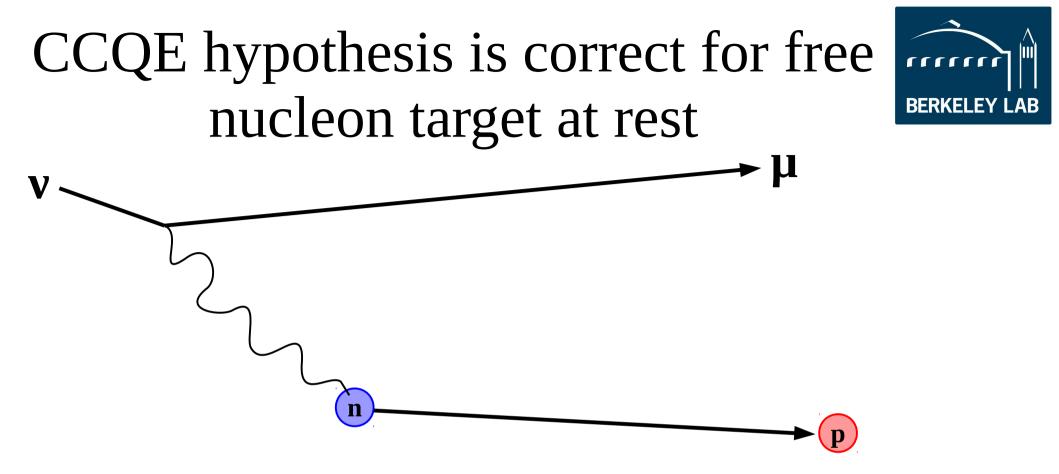
Acceptance differences

$$N_{\nu_{e}}^{far}(E_{reco}) = \int \Phi_{\nu_{e}}(E_{\nu}, L) \times \sigma_{\nu_{e}}(E_{\nu}) \times \epsilon^{far}(E_{\nu}) \times \mathbf{D}_{\nu_{e}}^{far}(E_{\nu} \to E_{reco}) dE_{\nu}$$
$$N_{\nu_{\mu}}^{near}(E_{reco}) = \int \Phi_{\nu_{\mu}}(E_{\nu}, 0) \times \sigma_{\nu_{\mu}}(E_{\nu}) \times \epsilon^{near}(E_{\nu}) \times \mathbf{D}_{\nu_{\mu}}^{near}(E_{\nu} \to E_{reco}) dE_{\nu}$$

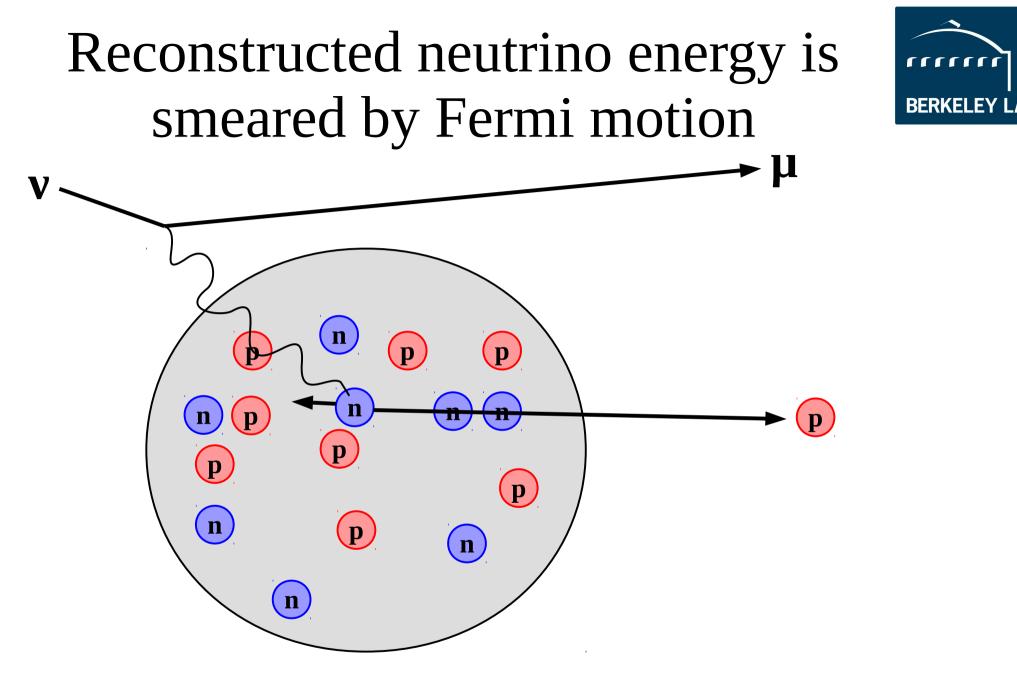
- Does ND cover same phase space as FD?
- Especially important when ND cannot be "functionally identical" to FD, i.e. T2K, DUNE

2018-11-02

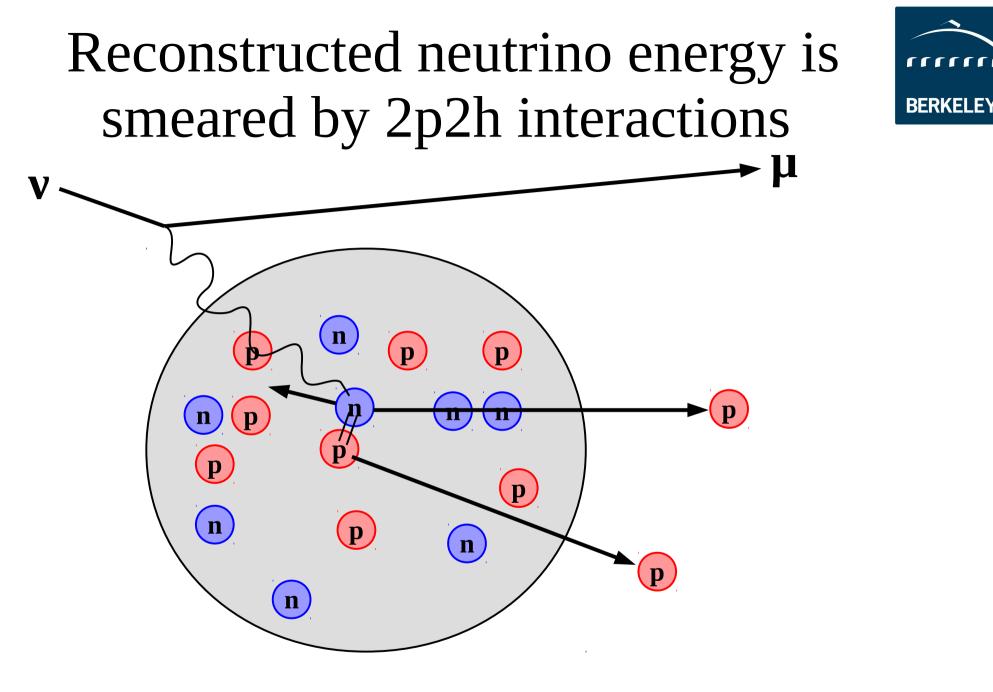
Reconstructing neutrino energy: CCQE hypothesis



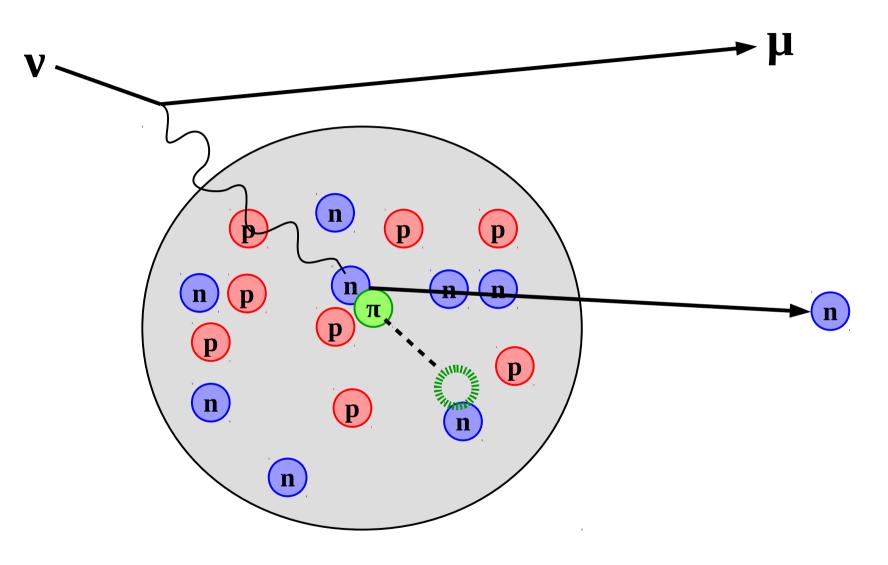
$$N_{\nu_{e}}^{far}(E_{reco}) = \int \Phi_{\nu_{e}}(E_{\nu}, L) \times \sigma_{\nu_{e}}(E_{\nu}) \times \epsilon^{far}(E_{\nu}) \times \mathbf{D}_{\nu_{e}}^{far}(E_{\nu} \to E_{reco}) dE_{\nu}$$
$$N_{\nu_{\mu}}^{near}(E_{reco}) = \int \Phi_{\nu_{\mu}}(E_{\nu}, 0) \times \sigma_{\nu_{\mu}}(E_{\nu}) \times \epsilon^{near}(E_{\nu}) \times \mathbf{D}_{\nu_{\mu}}^{near}(E_{\nu} \to E_{reco}) dE_{\nu}$$

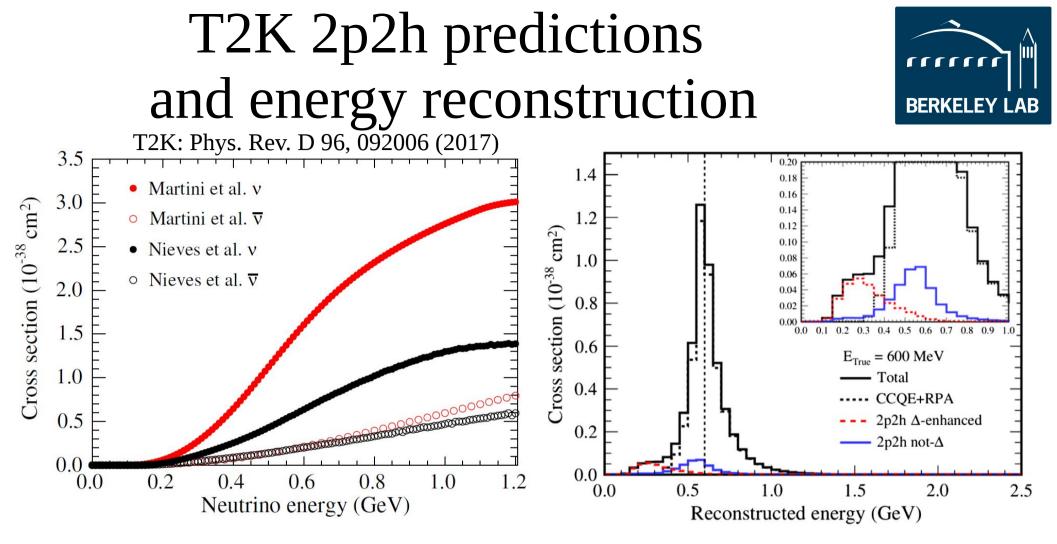

• T2K, T2HK: quasi-elastic assumption from lepton kinematics only

$$E_{\nu}^{rec} = \frac{m_f^2 - (m_i')^2 - m_l^2 + 2m_i'E_l}{2(m_i' - E_l + p_l\cos\theta_l)}$$


- m_f , m_i final and initial nucleon masses $m_i'=m_i-E_B$
- Depends on "removal energy" E_B
- Incorrect when interaction isn't CCQE 1p1h vn $\rightarrow \mu p$

2018-11-02


2018-11-02



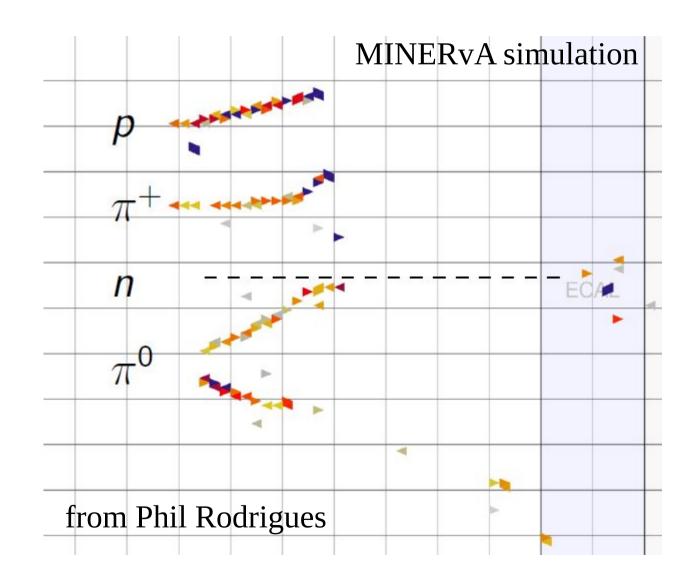
Pion production, FSI

- 2p2h processes give low-side tail on reconstructed energy spectrum
- Pion production + absorption also gives low-side tail

Reconstructing neutrino energy calorimetrically

$$N_{\nu_{e}}^{far}(E_{reco}) = \int \Phi_{\nu_{e}}(E_{\nu}, L) \times \sigma_{\nu_{e}}(E_{\nu}) \times \epsilon^{far}(E_{\nu}) \times \mathbf{D}_{\nu_{e}}^{far}(E_{\nu} \to E_{reco}) dE_{\nu}$$
$$N_{\nu_{\mu}}^{near}(E_{reco}) = \int \Phi_{\nu_{\mu}}(E_{\nu}, 0) \times \sigma_{\nu_{\mu}}(E_{\nu}) \times \epsilon^{near}(E_{\nu}) \times \mathbf{D}_{\nu_{\mu}}^{near}(E_{\nu} \to E_{reco}) dE_{\nu}$$

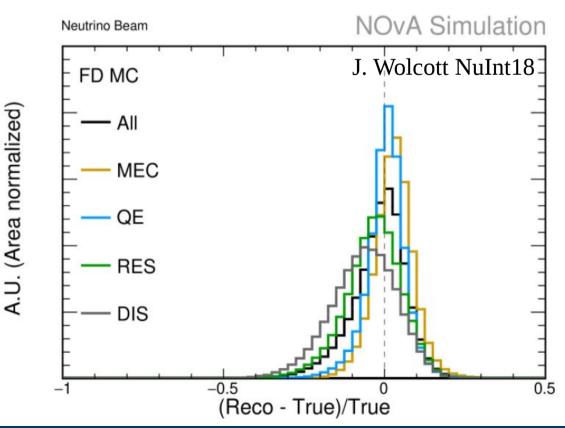
• NOvA, DUNE: calorimetric hadronic energy


 $E_{reco} = E_{lep} + E_{had}$

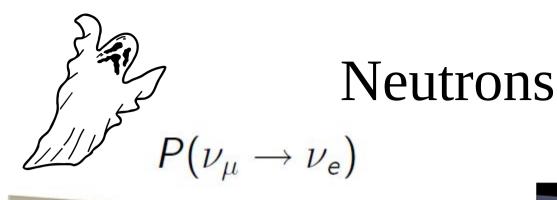
- Sensitive to makeup of hadronic final state
- Neutrons generally not detected, lead to missing hadronic energy

Detectors respond differently to different particles

- p, $\pi^{\pm} \rightarrow$ hadronic showers, maybe single tracks
- e, $\pi^0 \rightarrow EM$ showers
- Do you see pion masses?
- Do you see neutrons at all?

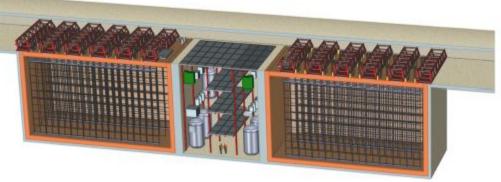


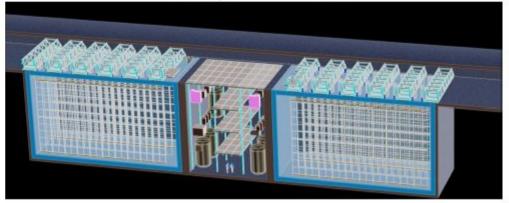
Even for calorimetric reco, energy smearing depends on final state



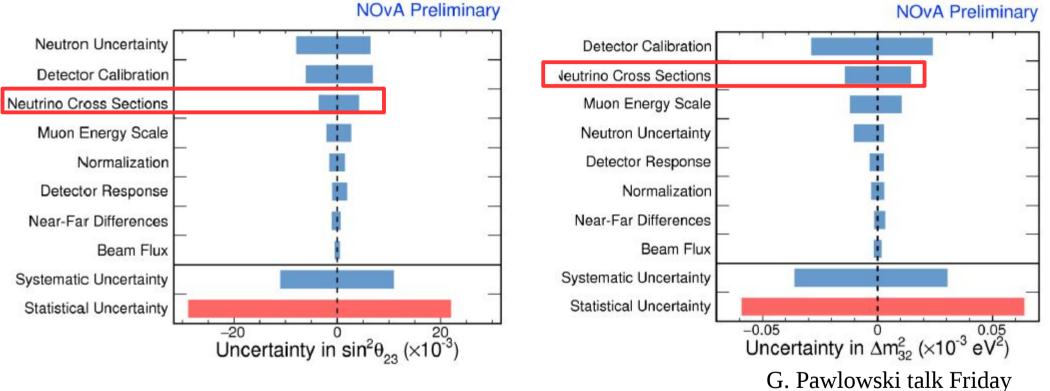
$$N_{\nu_{e}}^{far}(E_{reco}) = \int \Phi_{\nu_{e}}(E_{\nu}, L) \times \sigma_{\nu_{e}}(E_{\nu}) \times \epsilon^{far}(E_{\nu}) \times \mathbf{D}_{\nu_{e}}^{far}(E_{\nu} \to E_{reco}) dE_{\nu}$$
$$N_{\nu_{\mu}}^{near}(E_{reco}) = \int \Phi_{\nu_{\mu}}(E_{\nu}, 0) \times \sigma_{\nu_{\mu}}(E_{\nu}) \times \epsilon^{near}(E_{\nu}) \times \mathbf{D}_{\nu_{\mu}}^{near}(E_{\nu} \to E_{reco}) dE_{\nu}$$

- Example: NOvA simulated neutrino energy residual for different processes
- The relative mix of QE, 1π , DIS, etc. vs E_v affects E_{reco} , even if uncertainty on total cross section is small



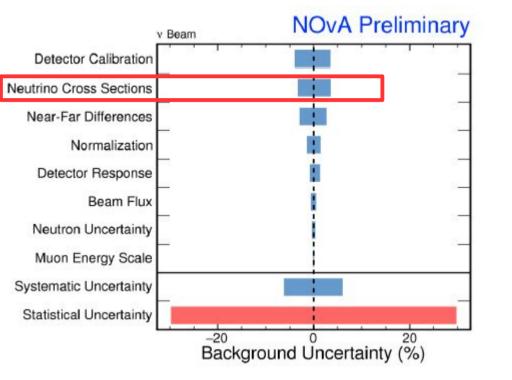

2018-11-02

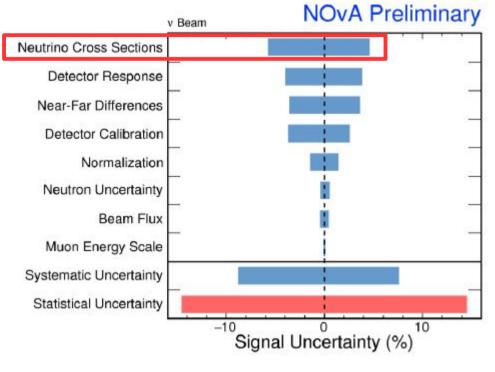
 $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$



- Ideally, we would measure antineutrino oscillations with an antidetector: v n $\rightarrow \mu^- p$ and v n $\rightarrow \mu^+ p$
- I'm told this is not feasible
- Poor detector response to neutrons, combined with asymmetry in neutron production by neutrinos and antineutrinos, is scary for CP violation measurements
- Modeling neutron production is very important

NOvA cross section uncertainties for v_{μ} disappearance





- Still statistically limited
- Cross sections among the leading uncertainties

NOvA cross section uncertainties for v_e appearance

G. Pawlowski talk Friday

- Still statistically limited
- Cross sections among the leading uncertainties

T2K cross section uncertainties

Source of uncertainty	ν_e CCQE-like	$ u_{\mu}$	$\nu_e \text{ CC1} \pi^+$
	$\delta N/N$	$\delta N/N$	$\delta N/N$
Flux	3.7%	3.6%	3.6%
(w/ ND280 constraint)			
Cross section	5.1%	4.0%	4.9%
(w/ ND280 constraint)			
Flux+cross-section			
(w/o ND280 constraint)	11.3%	10.8%	16.4%
(w/ ND280 constraint)	4.2%	2.9%	5.0%
FSI+SI+PN at SK	2.5%	1.5%	10.5%
SK detector	2.4%	3.9%	9.3%
All			
(w/o ND280 constraint)	12.7%	12.0%	21.9%
(w/ ND280 constraint)	5.5%	5.1%	14.8%

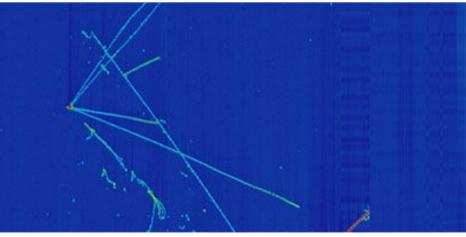
Source of uncertainty	$\overline{\nu}_e$ CCQE-like $\overline{\nu}_\mu$	
	$\delta N/N$	$\delta N/N$
Flux	3.8%	3.8%
(w/ ND280 constraint)	100 AL1201 35	
Cross section	5.5%	4.2%
(w/ ND280 constraint)		
Flux+cross-section		
(w/o ND280 constraint)	12.9%	11.3%
(w/ ND280 constraint)	4.7%	3.5%
FSI+SI+PN at SK	3.0%	2.1%
SK detector	2.5%	3.4%
All		
(w/o ND280 constraint)	14.5%	12.5%
(w/ ND280 constraint)	6.5%	5.3%

V

V

- Cross section uncertainties at the level of 5% after near detector constraint
- Due to anticorrelations, flux*XS has smaller uncertainty

Future: smaller statistical uncertainties



- Current "neutrino mode" event counts:
 - T2K: 90 v_e candidates
 - NOvA: 58 v_e candidates
- 10-15% statistical uncertainties
- Next generation: ~1000 v_e candidates \rightarrow few percent statistical uncertainty on v_e rate
- Cross section systematics will become dominant if modeling and analysis is not improved

- Much of existing neutrino-nucleus cross section data is on carbon
- Not clear how those data constrain cross sections on Argon
- We need to make measurements on Argon

LAr neutrino interaction in MicroBooNE

2018-11-02

Summary

- Neutrino interaction models affect predicted spectra in long-baseline oscillation experiments
- Uncertainties are significant, and only partially cancel with near detector inputs
- Next generation experiments will have high statistics → increased importance of cross section systematics