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Talks this afternoon

● This afternoon we will hear talks from experiments on their 
experience with systematic uncertainties, especially due to 
neutrino cross sections:
● DUNE analysis & systematics
● Hyper-K systematics
● MicroBooNE analysis & systematics
● Coffee-related systematics
● T2K neutrino interaction uncertainties
● NOvA systematics
● MINERvA interaction modeling uncertainties

● Goal of this talk is to introduce the topic of cross section 
uncertainties and why they matter
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Generic neutrino oscillation 
measurement

Neutrino source

νμ  

Far detector at
distance L

1) Measure flux, Φ(Eν) of νe at far detector at distance L 
2) Compare to predicted flux Φ(Eν) of νμ  at neutrino source
3) Party

νe  
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Generic neutrino oscillation 
measurement

Neutrino source

νμ  

Far detector at
distance L

1) Measure reconstructed energy spectrum at far detector
2) Use models to infer νe flux at far detector
3) Much less fun party where you are worried about all the    
     mistakes that might be in your models

νe  
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Generic neutrino oscillation 
measurement

Neutrino source

νμ  

Far detector at
distance L

To get flux Φ(Eν), you must first understand
1) νe-nucleus cross sections as a function of Eν 

νe  
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Generic neutrino oscillation 
measurement

Neutrino source

νμ  

Far detector at
distance L

To get flux Φ(Eν), you must first understand
1) νe-nucleus cross sections as a function of Eν 
2) Detector acceptance

νe  
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Generic neutrino oscillation 
measurement

Neutrino source

νμ  

Far detector at
distance L

To get flux Φ(Eν), you must first understand
1) νe-nucleus cross sections as a function of Eν 
2) Detector acceptance
3) Relationship between Eν and your detector observable

νe  
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But I have a near detector! Do I 
really need to worry about this?

Neutrino source

νμ  

Far detector at
distance L

νe  

Near detector at
distance ≈ 0

The near detector is very important, and greatly reduces the 
effect of uncertain flux and cross section

But many important effects do not cancel in a FD/ND ratio
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Differences are corrected using a 
model

● Extrapolation from near detector 
measurement to far detector prediction is 
done with a model, which is tuned to external 
data

● Cross section uncertainties can be reduced by
● Putting better, more complete models into event 

generators
● Making more/better measurements of neutrino 

cross sections
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Near vs. Far flux differences

● Solid angle effects introduce significant differences in 
the flux at the near and far detectors

● Affects energy dependence 
of the rest of the equation

● And that's without taking 
oscillations into account

DUNE Near/Far
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For DUNE, ND/FD flux differences 
have ~0.3-0.8% uncertainty

DUNE ND flux uncertainty DUNE ND/FD flux uncertainty
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Near and far 
cross section differences

● For a νe appearance measurement, ND is sensitive to νμ cross 
sections while FD is sensitive to νe cross sections

● Differences in lepton mass lead to different allowed phase space 
for νμ CC and νe CC interactions – the cross section in the 
additional νe CC phase space is completely unconstrained by 
ND data

● ND and FD may have different target material (i.e. T2K FGD), 
and measure cross sections on different nuclei
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Acceptance differences

● Does ND cover same phase space as FD?
● Especially important when ND cannot be “functionally 

identical” to FD, i.e. T2K, DUNE
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Reconstructing neutrino energy: 
CCQE hypothesis

● T2K, T2HK: quasi-elastic assumption from lepton kinematics only

● mf, mi final and initial nucleon masses mi'=mi-EB

● Depends on “removal energy” EB

● Incorrect when interaction isn't CCQE 1p1h νn→μp
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CCQE hypothesis is correct for free 
nucleon target at rest

n

ν μ

p
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Reconstructed neutrino energy is 
smeared by Fermi motion
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Reconstructed neutrino energy is 
smeared by 2p2h interactions 
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Pion production, FSI
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T2K 2p2h predictions 
and energy reconstruction

● 2p2h processes give low-side tail on reconstructed 
energy spectrum

● Pion production + absorption also gives low-side tail

 T2K: Phys. Rev. D 96, 092006 (2017)



2018-11-02 Chris Marshall - LBNL 20

Reconstructing neutrino energy 
calorimetrically

● NOvA, DUNE: calorimetric hadronic energy

      Ereco = Elep + Ehad

● Sensitive to makeup of hadronic final state
● Neutrons generally not detected, lead to missing 

hadronic energy
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Detectors respond differently to 
different particles

MINERvA simulation

from Phil Rodrigues

● p, π± → hadronic 
showers, maybe 
single tracks

● e, π0 → EM 
showers

● Do you see pion 
masses?

● Do you see 
neutrons at all? 
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Even for calorimetric reco, energy 
smearing depends on final state

● Example: NOvA 
simulated neutrino energy 
residual for different 
processes

● The relative mix of QE, 
1π, DIS, etc. vs Eν affects 
Ereco, even if uncertainty 
on total cross section is 
small

J. Wolcott NuInt18
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Neutrons

● Ideally, we would measure antineutrino oscillations with an 
antidetector: ν n→μ- p and ν n→μ+ p

● I'm told this is not feasible
● Poor detector response to neutrons, combined with asymmetry in 

neutron production by neutrinos and antineutrinos, is scary for CP 
violation measurements

● Modeling neutron production is very important
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NOvA cross section uncertainties 
for νμ disappearance

● Still statistically limited
● Cross sections among the leading uncertainties

G. Pawlowski talk Friday
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NOvA cross section uncertainties 
for νe appearance

● Still statistically limited
● Cross sections among the leading uncertainties

G. Pawlowski talk Friday
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T2K cross section uncertainties 

● Cross section uncertainties at the level of 5% after near 
detector constraint

● Due to anticorrelations, flux*XS has smaller uncertainty

 T2K: Phys. Rev. D 96, 092006 (2017)

ν ν
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Future: smaller statistical 
uncertainties

● Current “neutrino mode” event counts:
● T2K: 90 νe candidates

● NOvA: 58 νe candidates

● 10-15% statistical uncertainties

● Next generation: ~1000 νe candidates → few percent 
statistical uncertainty on νe rate

● Cross section systematics will become dominant if 
modeling and analysis is not improved
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Future: argon

● Much of existing neutrino-nucleus cross section data is 
on carbon

● Not clear how those data constrain cross sections on 
Argon

● We need to make measurements on Argon

LAr neutrino interaction in MicroBooNE
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Summary

● Neutrino interaction models affect predicted spectra in 
long-baseline oscillation experiments

● Uncertainties are significant, and only partially cancel 
with near detector inputs

● Next generation experiments will have high statistics → 
increased importance of cross section systematics
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