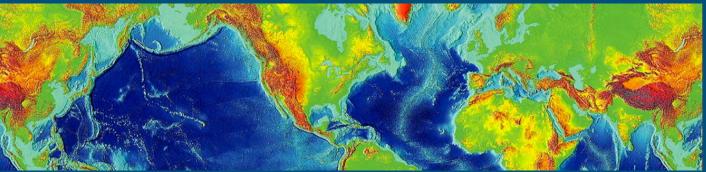
SYSTEMATIC ERRORS IN BOREXINO SOLAR AND GEONEUTRINO ANALYSES


LIVIA LUDHOVA

IKP-2, FORSCHUNGSZENRUM JÜLCH AND RWTH AACHEN UNIVERSITY, GERMANY

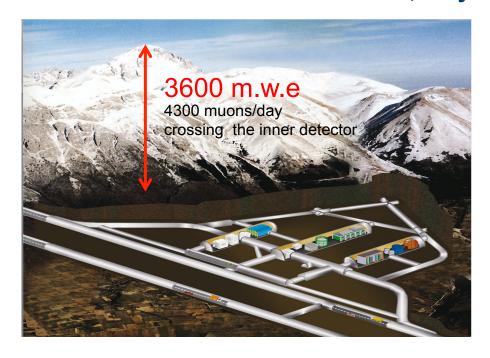
NOVEMBER 1ST, 2018

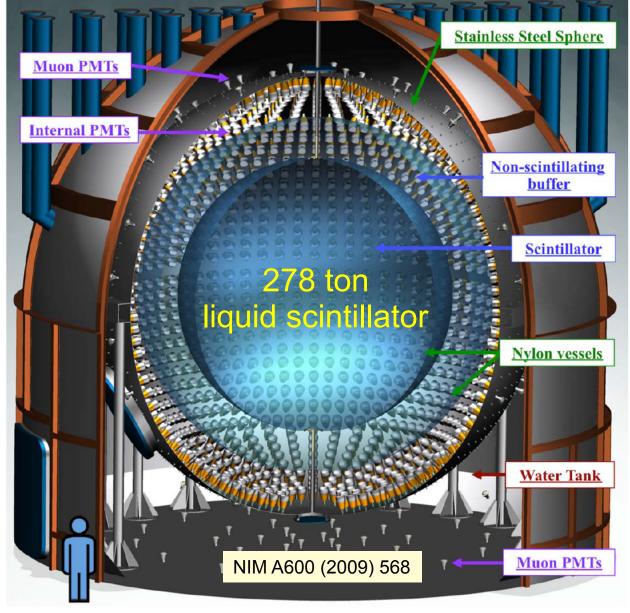
VANCOUVER, CANADA

International Workshop on Next Generation Nucleon Decay and Neutrino Detectors

OUTLINE

- 1. Borexino detector, calibration, and Monte Carlo
- 2. Latest solar neutrino analysis (Nature, October 25th, 2018)
 - ✓ Results summary
 - ✓ Main sources of systematic errros

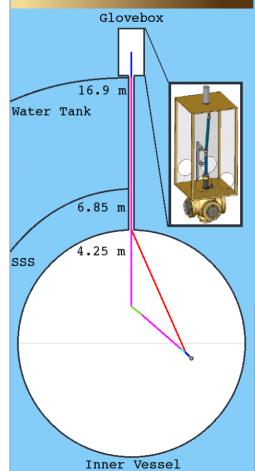

- ✓ Results summary
- ✓ Main critical issues in geoneutrino analysis



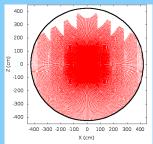
BOREXINO DETECTOR

Laboratori Nazionali del Gran Sasso, Italy

- the world radio-purest LS detector $< 9 \times 10^{-19} \text{ g(Th)/g}$, $< 8 \times 10^{-20} \text{ g(U)/g}$
- 550 hit PMTs / MeV
- energy reco: 5 keV (5%) @ 1 MeV
- position reco: 10 cm @ 1 MeV
- pulse shape identification (α/β, e⁺/e⁻)



Operating since 2007

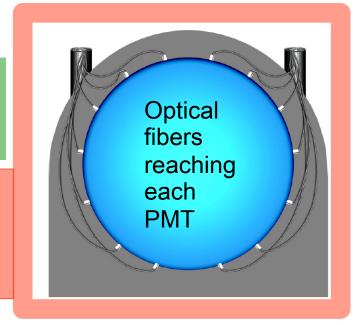

BOREXINO CALIBRATION

JINST 7 (2012) P10018

Internal calibration

- ~300 points in the whole scintillator volume
- LED-based source positioning system

		TOP			
	11 _	SSS	S1		
		IV	621		
N2			1 4	S2	
N3 ■	£ ,		-	S 3	
		FV			
N4	—		1	<u></u> 54	
N5			//	S5	
N6			s	6	
N	N7	оттом	S7	S	r


Source	Type	E [MeV]	Position	Motivations
⁵⁷ Co	γ	0.122	in IV volume	Energy scale
¹³⁹ Ce	γ	0.165	in IV volume	Energy scale
²⁰³ Hg	γ	0.279	in IV volume	Energy scale
⁸⁵ Sr	γ	0.514	z-axis + sphere R=3 m	Energy scale + FV
⁵⁴ Mn	γ	0.834	along z-axis	Energy scale
⁶⁵ Zn	γ	1.115	along z-axis	Energy scale
⁶⁰ Co	γ	1.173, 1.332	along z-axis	Energy scale
⁴⁰ K	γ	1.460	along z-axis	Energy scale
²²² Rn+ ¹⁴ C	β,γ	0-3.20	in IV volume	FV+uniformity
	α	5.5, 6.0, 7.4	in IV volume	FV+uniformity
²⁴¹ Am ⁹ Be	n	0-9	sphere R=4 m	Energy scale + FV

External calibration

9 positions with ²²⁸Th source (γ 2.615 MeV)

Laser calibration

- PMT time equalisation
- PMT charge calibration (charge calib. also using ¹⁴C)

Mitglied der Helmholtz-Gemeinschaft

BOREXINO MONTE CARLO

Better than 1% (1.9%) precision

for all relevant quantities in the solar analysis <2 (>3) MeV

Astrop. Phys. 97 (2018) 136

Geant-4 based

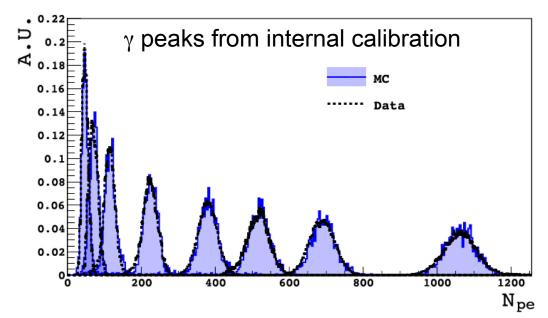
Tracking code

- Full detector geometry
- Energy loss
- Photon production & propagation

C++ Borexino custom

Electronics simulation

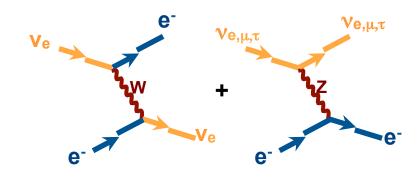
Follows real DAQ conditions

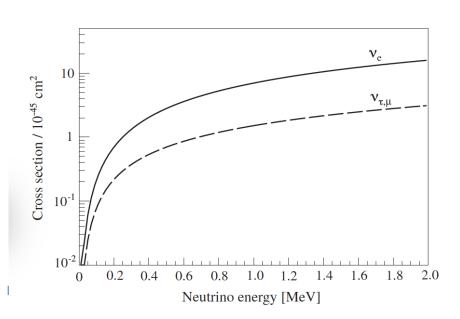

- PMT quality and calibration
 - Dark noise
 - Trigger condition
- Number of working channels on an event-by-event basis

Echidna: C++ Borexino custom

Reconstruction

- Several energy estimators
- Position reconstruction
- Pulse-shape variables
- Output in the same format as reconstructed data files

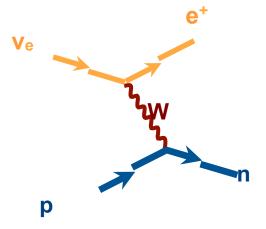

- Tuning on calibration data.
- Independently measured input parameters: emission spectra, attenuation length, PMT after-pulse, refractive index, effective quantum efficiencies.
- Biasing technique for external background.
- Simulation of pile-up events.



NEUTRINO AND ANTINEUTRINO DETECTION

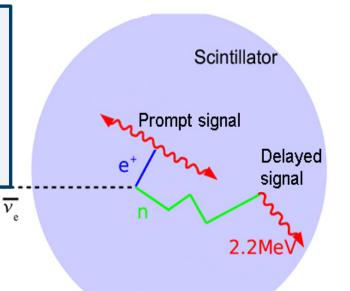
Neutrino detection:

elastic scattering off electrons



Antineutrino detection:

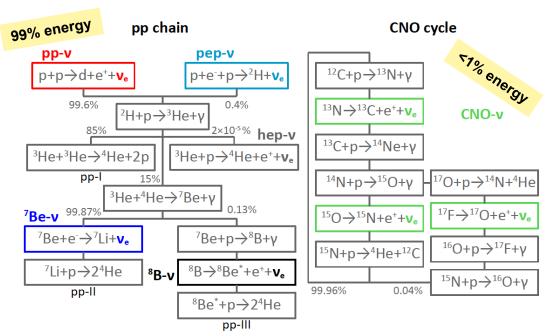
Inverse beta decay

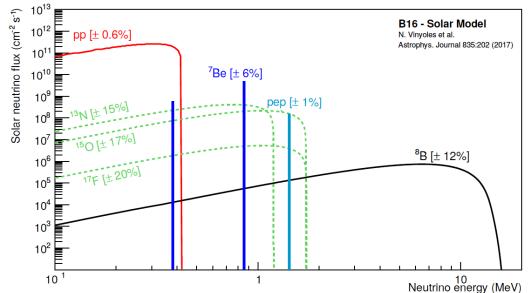

Energy threshold = 1.8 MeV Electron flavour only σ @ few MeV: ~10⁻⁴² cm² (~100 x more than scattering)

$$E_{prompt} = E_{visible}$$

$$= T_{e+} + 2 \times 511 \text{ keV}$$

$$= E_{antinu} - 0.784 \text{ MeV}$$




SOLAR NEUTRINOS

SOLAR NEUTRINOS AND WHY TO STUDY THEM

 $4p + 2e^{-} \rightarrow ^{4}He + 2e^{+} + 2v_{e} + 26.7 \text{ MeV}$

Solar and stellar physics

- Direct probe of nuclear fusion
- Testing thermodynamical stability of the Sun
- Standard Solar Models
 - √ Helioseimology
 - ✓ High-Z and Low-Z models (different ϕ_{ν} prediction)
 - ✓ Metallicity problem

Neutrino physics

- Survival probability and its upturn
- Matter effects
- Testing LMA-MSW predictions
- Searches for new physics
- Solar mixing angle and global fits of oscillation parameters

Page 8

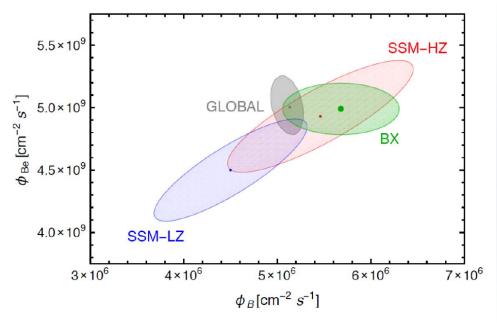
Spectroscopy of all pp-cycle neutrinos at once

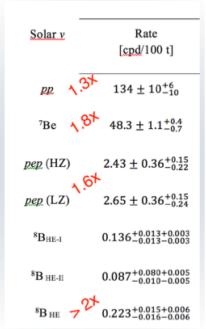
Low Energy Region (LER) 0.19 – 2.93 MeV:

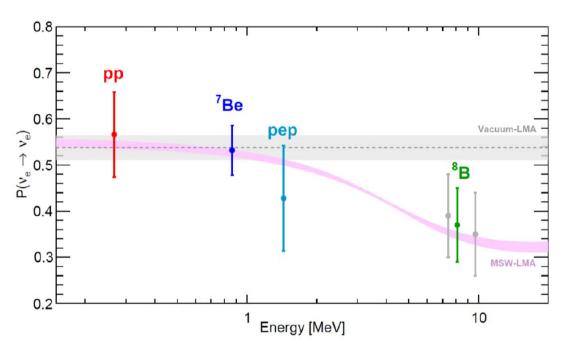
pp (9.5%), ⁷**Be** (2.7%), **pep** (>5 σ)

High Energy Region (HER) 3.2 – 16 MeV:

⁸**B** (3 MeV threshold, 8%)

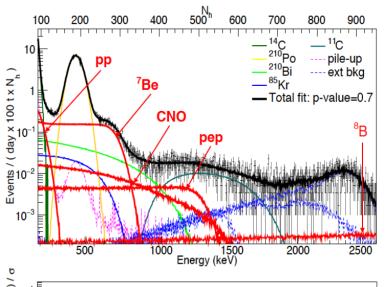

- First Borexino limit on hep neutrinos
- Limit on CNO cycle neutrinos
- Neutrino and elmag luminosity in agreement

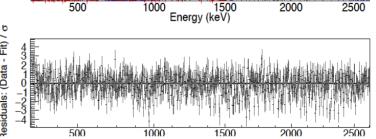


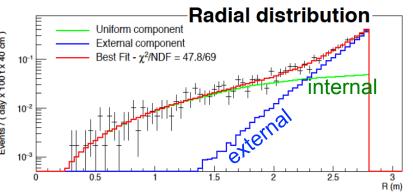


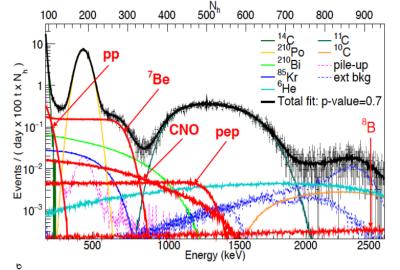
The Borexino Collaboration^{*}

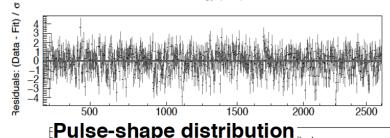
- Indication towards HZ Standard Solar Models
- BR(pp_{II}/pp_I)= $<^3$ He+ 4 He>/ $<^3$ He+ 3 He> = 0.18 \pm 0.03
- Survival probabilities at different energies in both vacuum and matter domains
- Vacuum-LMA model excluded at 98.2% CL

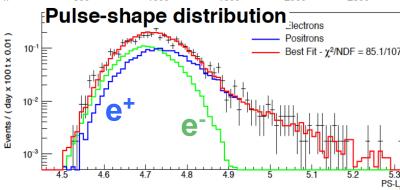





LOW ENERGY REGION (LER): MULTIVARIATE SPECTRAL FIT


Results on pp, ⁷Be, pep, and limit on CNO solar neutrinos





- 1291.51 days of Borexino Phase II
- Selection cuts in 71.3 ton FV

2 energy spectra

TFC-subtracted:

64% of exposure, 8% of ¹¹C

TFC-tagged:

46% of exposure, 92% of ¹¹C

Pulse-shape distribution

¹¹C(e+)/e- discrimination Constraining ¹¹C in the TFC-subtracted spectrum

Radial distribution:

To better disentangle external background from internal signal

MC-based and analytical fit of the energy spectra

- Complementarity
- Thousands of fits
- Differences included in sys error

SYSTEMATIC ERRORS IN LER

Systematic errors in the <i>LER</i> analysis							
	<i>pp</i> neutrinos		7Be neutrinos		pep neutrinos		
Source of uncertainty	-%	+%	-%	+%	-%	+%	
Fit models	-4.5	+0.5	-1.0	+0.2	-6.8	+2.8	
Fit method (analytical/MC)	-1.2	+1.2	-0.2	+0.2	-4.0	+4.0	
Choice of the energy estimator	-2.5	+2.5	-0.1	+0.1	-2.4	+2.4	
Pile-up modeling	-2.5	+0.5	0	0	0	0	
Fit range and binning	-3.0	+3.0	-0.1	+0.1	-1.0	+1.0	
Inclusion of the 85Kr constraint	-2.2	+2.2	0	+0.4	-3.2	0	
Live Time	-0.05	+0.05	-0.05	+0.05	-0.05	+0.05	
Scintillator Density	-0.05	+0.05	-0.05	+0.05	-0.05	+0.05	
Fiducial Volume	-1.1	+0.6	-1.1	+0.6	-1.1	+0.6	
Total systematics (%)	-7.1	+4.7	-1.5	+0.8	-9.0	+5.6	

Fit models:

the shapes of fit functions are varied within the uncertainties allowed by the calibration data.

Fit methods:

analytical approach versus Monte Carlo shapes of the spectral components.

Energy estimators

#triggered PMTs in a fixed time window, #of hits, #photoelectrons.

Pile-up modelling:

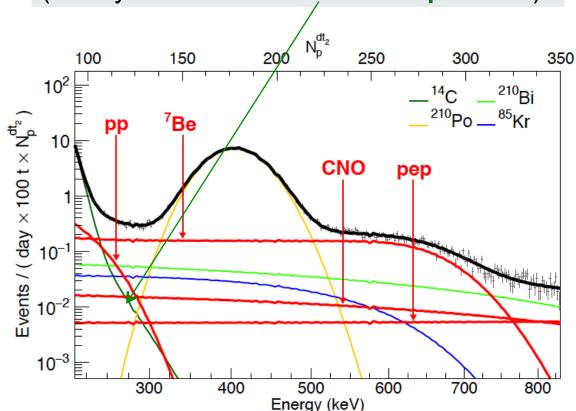
Synthetic pile-up vs convolution with with random data spectrum.

⁸⁵Kr constraint:

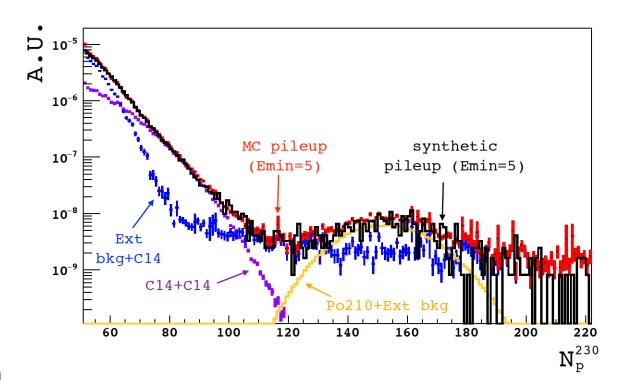
Constrained based on the 85 Kr -> 85 mRb fast coincidence (BR = 0.43%).

Fiducial Volume:

Position reconstruction precision based on calibration data.



¹⁴C-DOMINATED PILE-UP


Borexino has 10^{-18} g/g of 14 C 40 + 2 counts / s / 100 ton

Critical for pp neutrinos: multiple events reconstructed as a single event

Method A: convolution of all spectral shapes with random data spectrum (mostly visible as a **kink in** ¹⁴**C spectrum**)

Method B: synthetic pile-up as a separate PDF, with constrained shape and rate (1. MC- and 2. data- based PDF construction)

Page 1

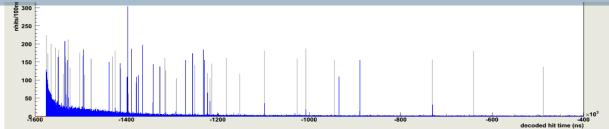
THREE-FOLD COINCIDENCE (TFC) TO TAG 11C \ \ \u

Critical for pep and CNO neutrinos

$$\mu + {}^{12}\text{C} \rightarrow \mu + {}^{11}\text{C} + n$$

$$1{}^{11}\text{C} \rightarrow {}^{11}\text{B} + e^{+} + \nu_{e}$$

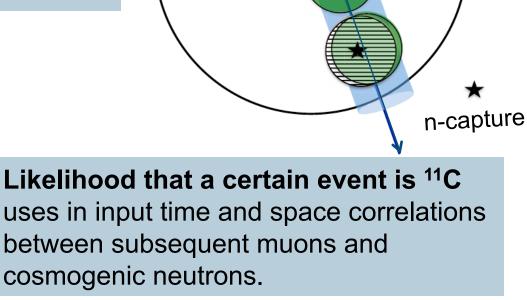
$$\tau \sim 30 \text{ min}$$


$$n + p \rightarrow d + \gamma \text{ (2.2 MeV)}$$

$$\tau \sim 260 \text{ } \mu\text{s}$$

Muon detection ε = 99.992%:

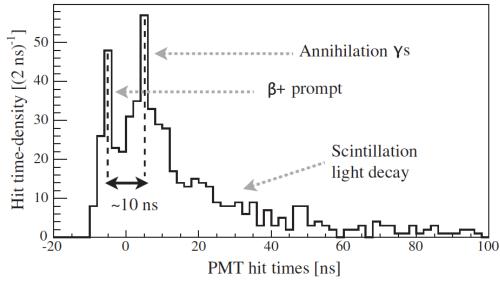
- Outer Detector triggers
- Cluster of hits in Outer Detector data
- Pulse-shape of Inner Detector data


Neutron detection: after each ID μ , 1.6 ms gate is opened to detect neutrons: example with several tens of neutrons.

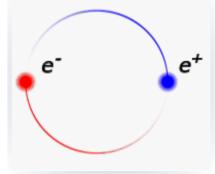
Exposure divided to 2 categories:

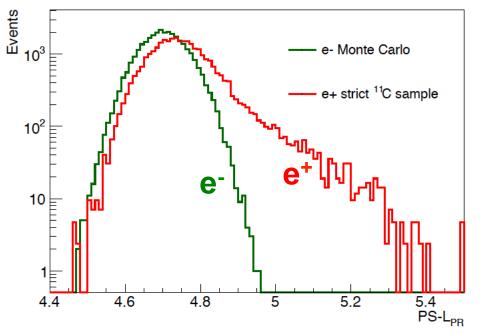
TFC-tagged (46% of exposure, 92% of ¹¹C)

TFC-subtracted (64% of exposure, 8% of ¹¹C)


Cylindrical cut

around μ-track

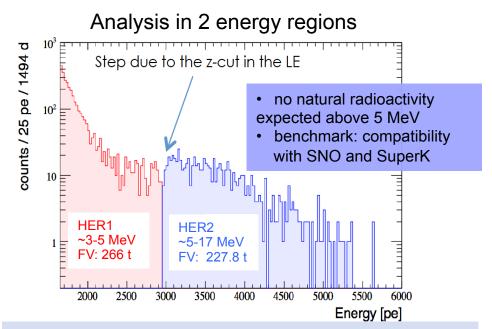

ELECTRON-POSITRON PULSE SHAPE DISCRIMINATION


Critical for pep and CNO neutrinos

in ~50% of the cases, e⁺ annihilation is delayed by ortho-positronium formation (τ ~3ns);

Single ortho-positronium event, in which annihilation occurs in 10 ns after o-Po formation

Pulse shape estimator:

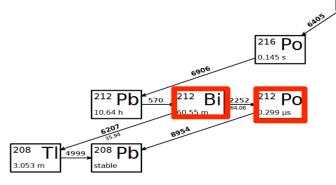

normalized likelihood of the position reconstruction algorithm that uses light emission profiles for electrons.

Used to pin-down the remaining ¹¹C(e⁺) in the TFC-subtracted spectrum.

HIGH ENERGY REGION (HER) ANALYSIS

Results on ⁸B solar neutrinos

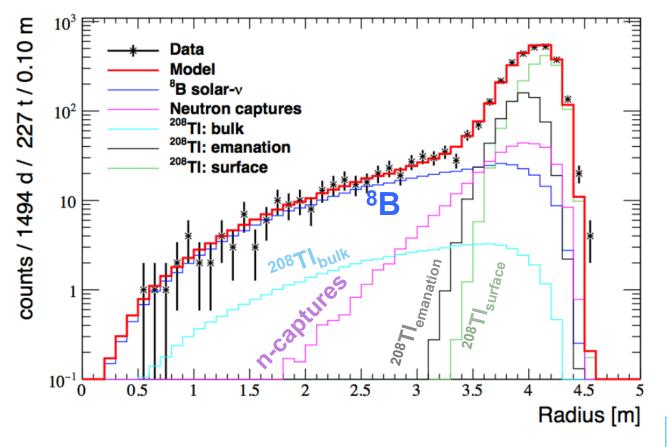
Backgrounds after selection cuts (neutron, cosmogenics, TFC(¹⁰C), ²¹⁴Bi-²¹⁴Po, random coincidence)

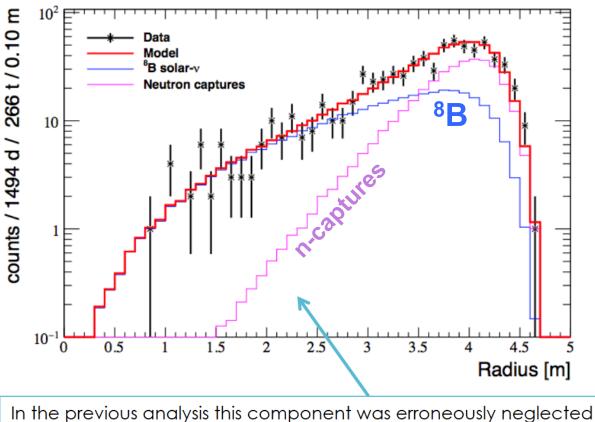

HER1

- √ cosmogenic ¹¹Be
- √ 208TI (bulk , emanation and vessel surface)
- √ y's from n-captures

HER2

- √ cosmogenic ¹¹Be
- ✓ y's from n-captures


- Almost all scintillator volume used in the analysis.
- Factor 2 improvement wrt PRD 82 (2010) 033006.
- 5x lower internal ²⁰⁸Tl background estimated from ²¹²Bi-²¹²Po coincidences within 3 m radius.
- Two components of the external ²⁰⁸Tl background: pure surface and due to ²²⁰Rn emanation.
- Identified new source of background: γ's from neutrons captured on materials different than H,C.
 The source of neutrons are (α,n) reactions and fissions from U and Th chains.
- New estimation of the ¹¹Be background compatible with 0.


RADIAL FITS IN HER1 AND HER2

No use of energy spectra is a choice: no assumptions on the $P_{ee}(E_v)$ shape

HER2: ~5-17 MeV

RESULTS AND SYSTEMATIC ERRORS IN HER

Systematic errors in the HER analysis (8B neutrinos)							
	HER-I HE		HER-I	HER-II		HER (tot)	
Source of uncertainty	-%	+%	-%	+%	-%	+%	
Target Mass	-2.0	+2.0	-2.0	+2.0	-2.0	+2.0	
Energy scale	-0.5	+0.5	- 4.9	+4.9	-1.7	+1.7	
z-cut	-0.7	+0.7	0	0	-0.4	+0.4	
Live time	-0.05	+0.05	-0.05	+0.05	-0.05	+0.05	
Scintillator density	-0.05	+0.05	-0.05	+0.05	-0.05	+0.05	
Total systematics (%)	-2.2	+2.2	-5.3	+5.3	-2.7	+2.7	

Additionally studied:

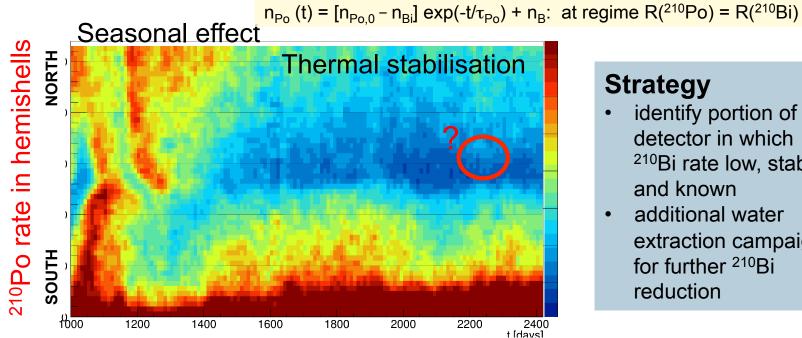
- PDF's radial distortion +3%.
- Emanation vessel shift +1%.
- Distortion of the emanation PDF's.
- Binning dependence.

This measurement	2.55 ±0.18 ±0.07 x 10 ⁶ cm ⁻² s ⁻¹	
BX 2010	2.4 ±0.4 x10 ⁶ cm ⁻² s ⁻¹	
SuperKamiokande	2.345 ±0.014 ±0.036 x 10 ⁶ cm ⁻² s ⁻¹	

QUEST FOR CNO SOLAR NEUTRINOS

²¹⁰Bi and CNO correlated

external constraint on ²¹⁰Bi from ²¹⁰Po (time) needed

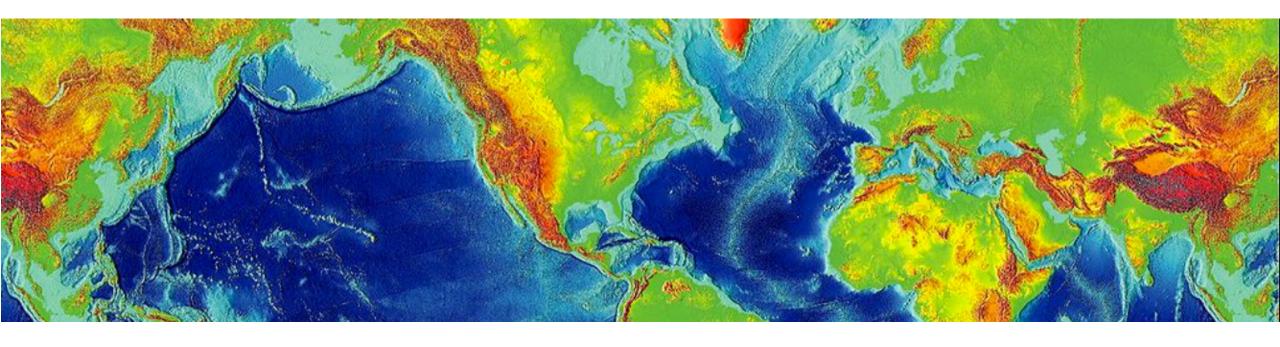

 β (63 KeV) → 210**Po** -²¹⁰Pb $T_{1/2} = 22y$ 5 days stable 138 days

 $R(^{210}Po, Dec 2011) \sim 1400 \text{ cpd/}100 \text{ ton}$

 $R(^{210}Bi, Phase II) = 17.5 + 1.9 cpd/100 ton$ fit with CNO constrained to SSM

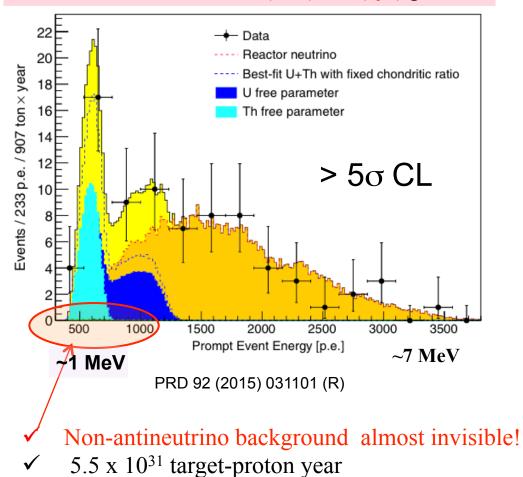
F. Villante et al., Phys. Lett. B 701 (2011)

- Nylon vessel holding the scintillator is a source of ²¹⁰Po
 - ✓ diffusion slow -> ²¹⁰Po cannot penetrate to the FV
 - √ block convection -> thermal stabilisation


Strategy

- identify portion of the detector in which ²¹⁰Bi rate low, stable, and known
- additional water extraction campaign for further ²¹⁰Bi reduction

GEONEUTRINOS



GEONEUTRINOS AND WHY TO STUDY THEM

Surface heat flux: 47 + 3 TW Nuclear physics Abundance of Radiogenic (based on the measured temperature gradients radioactive heat $^{238}U \rightarrow ^{206}Pb + 8 \alpha + 8 e^{-} + 6$ anti-neutrinos + 51.7 MeV along 30,000 bore holes around the globe) **elements** \rightarrow 208Pb + 6 α + 4 e⁻ + 4 anti-neutrinos + 42.8 MeV (Main goal) $^{40}\text{K} \rightarrow ^{40}\text{Ca} + e^- + 1 \text{ anti-neutrino} + 1.32 \text{ MeV}$ Geoneutrinos Distribution of radioactive elements (models) Heat production heat production continents **8**TW (7–8TW) mantle From geoneutrino To predict: (3-25 TW) **Geoneutrino flux** measurement: mantle cooling core heat flow Earth shines in antineutrinos: flux ~106 cm⁻² s⁻¹ 16TW (4-27TW) ITW (9–17TW) leaving freely and instantaneously the Earth interior (to compare: solar neutrino (NOT antineutrino!) flux ~10¹⁰ cm⁻² s⁻¹)

GEONEUTRINO RESULTS AND ANALYSIS

Borexino 2015: 23.7 +6.5 (stat) +0.9 (sys) geonu's

- Unbinned maximum likelihood fit of 77 candidates.
- Non-antineutrino background almost negligible (< 1 event) and constrained in the fit.
- Reactor background left free in the fit: results compatible with expectations.
- 2 kinds of fit:
 - ✓ U/Th left free;
 - ✓ U/Th constrained to chondritic value.
- Statistical error largely dominates systematic uncertainty (reactor spectra, uncertainty of backgrounds, and detector response).

New update with ~20% precision under preparation.

First geologically significant results available but more statistics needed!

Important new tool for future experiments

BACKGROUNDS

B) Non-antineutrino background

1) Cosmogenic background

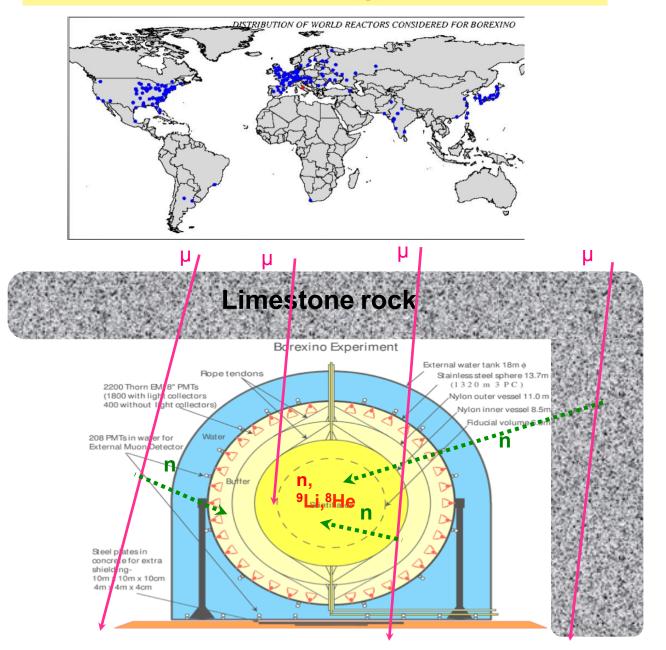
- 9 Li and 8 He ($T_{1/2}$ = 119/178 ms)
- •decay: β(prompt) + neutron (delayed);
- fast neutrons
 scattered protons (prompt)

Estimated by studying coincidences detected AFTER muons.

2) Accidental coincidences;

Estimated from OFF-time coincidences.

3) Due to the internal radioactivity:


(α , n) reactions: 13 C(α , n) 16 O

Prompt: scattered proton, ¹²C(4.4 MeV) & ¹⁶O (6.1 MeV)

Estimated from $^{210}\text{Po}(\alpha)$ and ^{13}C contaminations,

cross section.

A) Reactor antineutrino background

KEY POINTS AND SUMMARY

Solar neutrinos:

Spectral multivariate fit (radial and pulse shape e^{+/}e⁻ distributions):

- pp neutrinos: ¹⁴C and its pile-up.
- ⁷Be neutrinos: ²¹⁰Bi out of equilibrium with ²³⁸U chain, ⁸⁵Kr; low levels of ²³⁸U and ²³²Th.
- pep neutrinos: cosmogenic ¹¹C(e⁺): TFC technique and e^{+/}e⁻ discrimination.
- CNO neutrinos: cosmogenic ¹¹C(e⁺), correlations with ²¹⁰Bi and *pep* (*pp/pep* ratio constraint)

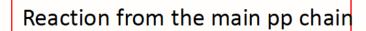
Radial fit:

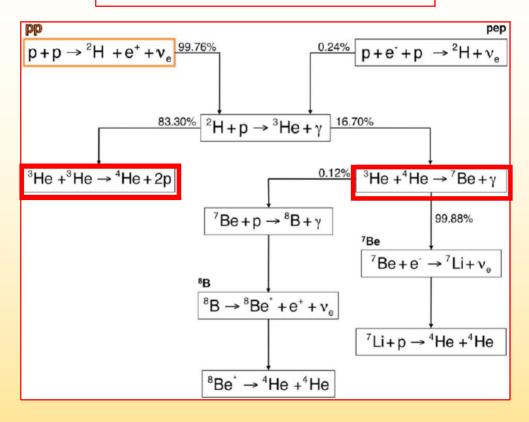
8B neutrinos: cosmogenics and external backgrounds.

Geoneutrinos:

- Statistics is an issue -> large detectors.
- Cosmogenic ${}^9\text{Li-}{}^8\text{He}$ as (β + neutron) emitters: depth of the laboratory.
- 210 Po out of equilibrium -> danger of (α, n) background.
- Reactor antineutrinos.
- Key: local geology to subtract the crustal (to get the mantle) contribution.

Back up slides

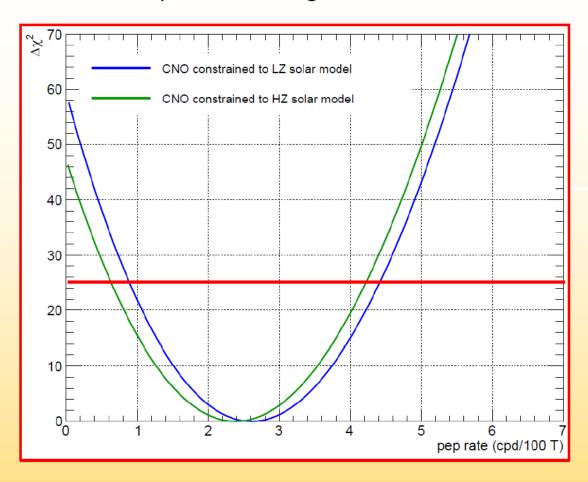



Solar v	Rate [cpd/100 t]	Flux – non-oscillated [cm ⁻² s ⁻¹]	Flux – e-equivalent [cm-2 s-1]
pp \3	$134 \pm 10^{+6}_{-10}$	$(6.1 \pm 0.5^{+0.3}_{-0.5}) \times 10^{10}$	$(4.2 \pm 0.3^{+0.2}_{-0.3}) \times 10^{10}$
⁷ Be √.8	$48.3 \pm 1.1^{+0.4}_{-0.7}$	$(4.99 \pm 0.11^{+0.06}_{-0.08}) \times 10^9$	$(3.15 \pm 0.07^{+0.03}_{-0.05}) \times 10^9$
pep (HZ)	$2.43 \pm 0.36^{+0.15}_{-0.22}$	$(1.27 \pm 0.19^{+0.08}_{-0.12}) \times 10^{8}$	$(0.78 \pm 0.12^{+0.05}_{-0.07}) \times 10^{8}$
pep (LZ)	$2.65 \pm 0.36^{+0.15}_{-0.24}$	$(1.39 \pm 0.19^{+0.08}_{-0.13}) \times 10^{8}$	$(0.85 \pm 0.12^{+0.05}_{-0.08}) \times 10^{8}$
$^8\mathrm{B}_\mathrm{HE ext{-}I}$	$0.136^{+0.013}_{-0.013}{}^{+0.003}_{-0.003}$	$(5.77^{+0.56+0.15}_{-0.56-0.15}) \times 10^6$	$(2.66^{+0.25+0.06}_{-0.25-0.06}) \times 10^6$
$^8\mathrm{B}_{\mathrm{HE-II}}$	$0.087^{+0.080+0.005}_{-0.010-0.005}$	$(5.56^{+0.52+0.33}_{-0.64-0.33}) \times 10^6$	$(2.44^{+0.22+0.14}_{-0.28-0.14}) \times 10^6$
⁸ B _{HE} 7	$0.223^{+0.015}_{-0.016}$	$(5.68^{+0.39+0.03}_{-0.41-0.03}) \times 10^6$	$(2.57^{+0.17+0.07}_{-0.18-0.07}) \times 10^6$

Implication of the results: probe solar fusion with R

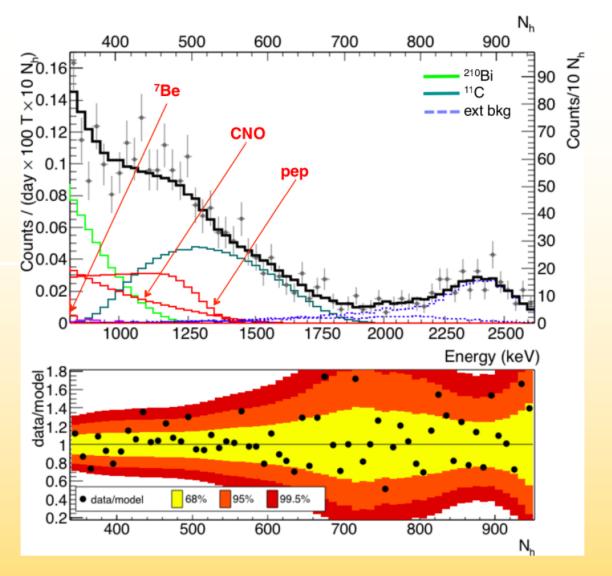
$$R = \frac{Rate(^{3}He + ^{3}He)}{Rate(^{3}He + ^{4}He)}$$

$$R = \frac{2 \Phi(^{7}Be)}{\Phi(pp) - \Phi(^{7}Be)}$$


Expected values: (C. Pena Garay, private comm,)

$$R = 0.180 \pm 0.011$$
 HZ
 $R = 0.161 \pm 0.010$ LZ

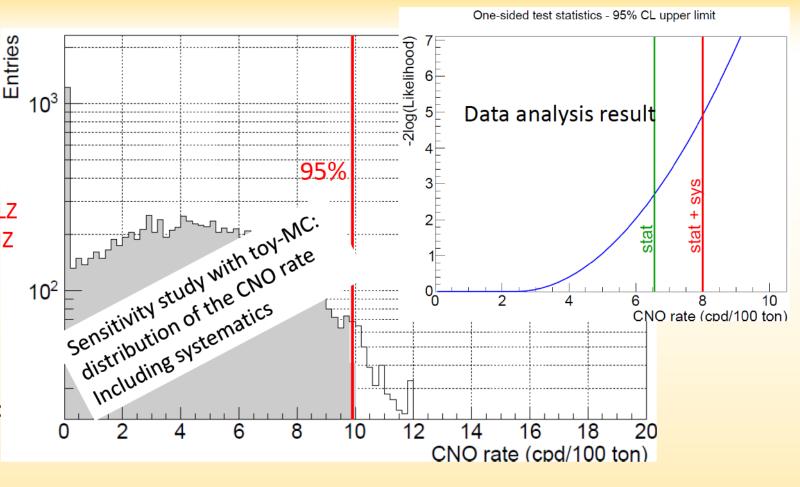
Measured value:


5σ evidence of pep solar v (including systematics uncertainties)

Likelihood profile resulting from the multivariate fit

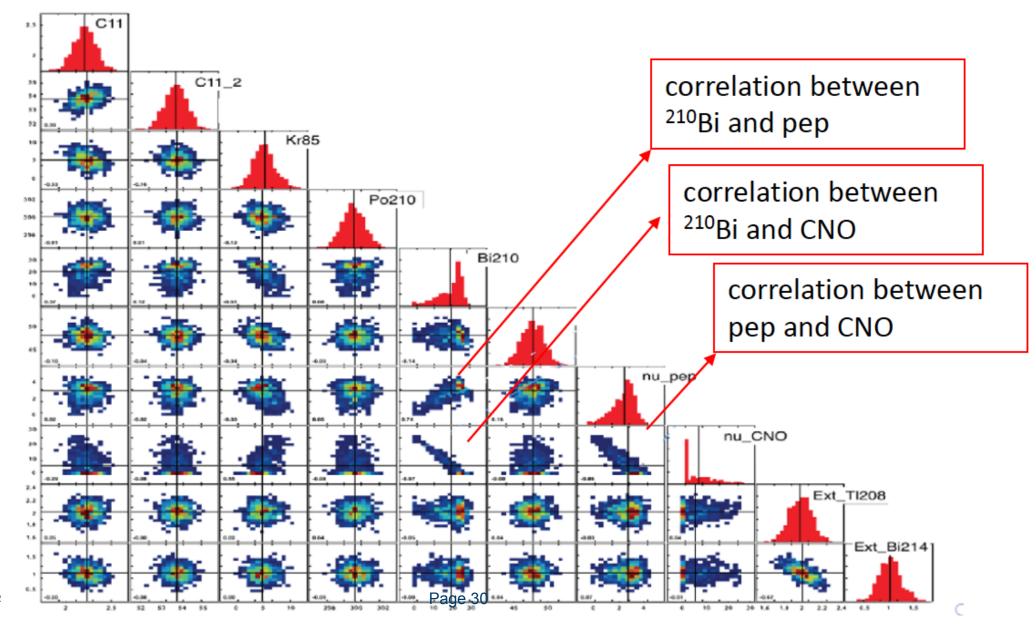
Select innermost β- like events

Radius<2.4 PS-LPR<4.8


Upper limit on the CNO flux

- Set a constrain to the ratio pp/pep
- Very well know in the solar model
- Include oscillations LMA-MSW
- Toy MC study of the sensitivity:

the median 95% CL is 9 cpd/100t for LZ 10 cpd/100t for HZ


95% C.L. limit on the CNO n rate 8.1 cpd/100t including systematics errors

Previous limit (set by Borexino Phase I): 7.9 cpd/100t

	Borexino result	Expected HZ	Expected LZ
CNO v	< 8.1 95%C.L	4.91 +-0.56	3.62 +- 0.37
	cpd/100t	cpd/100t	cpd/100t

SENSITIVITY STUDIES

