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1.  Borexino detector, calibration, and Monte Carlo 

2.  Latest solar neutrino analysis (Nature, October 25th, 2018) 
ü  Results summary 
ü  Main sources of systematic errros 

3.  Latest geoneutrino analysis (PRD 92, 031101(R ) (2015)) 
ü  Results summary 
ü  Main critical issues in geoneutrino analysis 

NEW 



BOREXINO DETECTOR 
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278 ton 
liquid scintillator 

Laboratori Nazionali del Gran Sasso, Italy 

Operating since 2007 

3600 m.w.e 
4300 muons/day 
crossing  the inner detector 

NIM A600 (2009) 568 

•  the world radio-purest LS detector 
       < 9 × 10-19 g(Th)/g , < 8 × 10-20 g(U)/g 
•  550 hit PMTs / MeV 
•  energy reco: 5 keV (5%) @ 1 MeV 
•  position reco: 10 cm @ 1 MeV 
•  pulse shape identification (α/β, e+/e-) 



BOREXINO CALIBRATION 
JINST 7 (2012) P10018 

Internal calibration 
•  ~300 points in the whole 

scintillator volume 
•  LED-based source 

positioning system 

 
 
 
 
 

External calibration 
9 positions with 228Th source 
                         (γ 2.615 MeV) 

Laser calibration 
•  PMT time equalisation 
•  PMT charge calibration 
     (charge calib. also using 14C) 

Optical 
fibers 
reaching 
each 
PMT 



BOREXINO MONTE CARLO 
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Astrop. Phys. 97 (2018) 136 

γ peaks from internal calibration 

Geant-4 based 

Tracking code 
•  Full detector geometry 
•  Energy loss  
•  Photon production & propagation 

C++ Borexino custom 

Electronics simulation 
Follows real DAQ conditions 

•  PMT quality and calibration 
•  Dark noise 

•  Trigger condition 
•  Number of working channels on an 

event-by-event basis 

Echidna: C++ Borexino custom 

Reconstruction 
•  Several energy estimators 
•  Position reconstruction 
•  Pulse-shape variables 
•  Output in the same format as 

reconstructed data files 

•  Tuning on calibration data. 
•  Independently measured input parameters: 

emission spectra, attenuation length, PMT 
after-pulse, refractive index, effective quantum 
efficiencies. 

•  Biasing technique for external background. 
•  Simulation of pile-up events. 

Better than 1% (1.9%) precision  
for all relevant quantities in the solar analysis <2 (>3) MeV 



NEUTRINO AND ANTINEUTRINO DETECTION 
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Neutrino detection: 
elastic scattering off electrons 

Antineutrino detection: 
Inverse beta decay 

Energy threshold = 1.8 MeV 
Electron flavour only 
σ@ few MeV: ~10-42 cm2  

(~100 x more than scattering) 
 

νe 
e+ 

p 

W 

n 

Eprompt = Evisible  

           = Te+ + 2 x 511 keV 

           = Eantinu – 0.784 MeV 
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SOLAR NEUTRINOS 



SOLAR NEUTRINOS AND WHY TO STUDY THEM 
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Solar and stellar physics 
•  Direct probe of nuclear fusion 
•  Testing thermodynamical stability of the Sun 
•  Standard Solar Models  

ü  Helioseimology 
ü  High-Z and Low-Z models (different φν prediction) 
ü  Metallicity problem 

Neutrino physics 
•  Survival probability and its upturn 
•  Matter effects 
•  Testing LMA-MSW predictions 
•  Searches for new physics 
•  Solar mixing angle and global fits of oscillation 

parameters 

4p + 2e- -> 4He + 2e+ + 2 νe + 26.7 MeV 99% energy 



LATEST SOLAR-ν RESULTS Nature Oct 25th 2018 

NEW Spectroscopy of all pp-cycle neutrinos at once 
Low Energy Region (LER) 0.19 – 2.93 MeV: 
       pp (9.5%), 7Be (2.7%), pep (>5σ) 
High Energy Region (HER) 3.2 – 16 MeV: 
       8B (3 MeV threshold, 8%) 
•  First Borexino limit on hep neutrinos 
•  Limit on CNO cycle neutrinos 
•  Neutrino and elmag luminosity in agreement 

•  Indication towards HZ Standard Solar Models 
•  BR(ppII/ppI)=<3He+4He>/<3He+3He> = 0.18+0.03 
•  Survival probabilities at different energies in both 

vacuum and matter domains 
•  Vacuum-LMA model excluded at 98.2% CL 



LOW ENERGY REGION (LER): MULTIVARIATE SPECTRAL FIT 
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Results on pp, 7Be, pep, and limit on CNO solar neutrinos 

2 energy spectra 
TFC-subtracted:  

 64% of exposure, 8% of 11C 
TFC-tagged:  

 46% of exposure, 92% of 11C 
 

Pulse-shape distribution  
11C(e+)/e- discrimination  
Constraining 11C in the TFC-subtracted 
spectrum 
 

Radial distribution:  
To better disentangle external 
background from internal signal 

•  1291.51 days of Borexino Phase II 
•  Selection cuts in 71.3 ton FV  

MC-based  and analytical fit of the 
energy spectra 
•  Complementarity 
•  Thousands of fits 
•  Differences included in sys error 

e- 
internal 

e+ 



SYSTEMATIC ERRORS IN LER 
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Fit models: 
the shapes of fit functions are varied 
within the uncertainties allowed by the 
calibration data. 
Fit methods: 
analytical approach versus Monte Carlo 
shapes of the spectral components. 
Energy estimators 
#triggered PMTs in a fixed time window, 
#of hits, #photoelectrons. 
Pile-up modelling: 
Synthetic pile-up vs convolution with with 
random data spectrum. 
85Kr constraint: 
Constrained based on the 85Kr -> 85mRb 
fast coincidence (BR = 0.43%). 
Fiducial Volume: 
Position reconstruction precision based 
on calibration data. 



14C-DOMINATED PILE-UP 
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Method A: convolution of all spectral 
shapes with random data spectrum 
(mostly visible as a kink in 14C spectrum) 

Method B: synthetic pile-up as a separate PDF, 
with constrained shape and rate  
(1. MC- and 2. data- based PDF construction)  

Critical for pp neutrinos: multiple events reconstructed as a single event 

Borexino has 10-18 g/g of 14C 
 

40 + 2 counts / s / 100 ton 



THREE-FOLD COINCIDENCE (TFC) TO TAG 11C 
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Critical for pep and CNO neutrinos 

µ + 12C à  µ + 11C + n  

n + p à d + γ (2.2 MeV)             
τ∼260 µs   

11C à  11B + e+ + νe 
τ ~ 30 min 

µ Cylindrical cut  
around µ-track 

Exposure divided to 2 categories: 
TFC-tagged (46% of exposure, 92% of 11C) 
TFC-subtracted (64% of exposure, 8% of 11C) 

Muon detection ε = 99.992%: 
•  Outer Detector triggers 
•  Cluster of hits in Outer 

Detector data 
•  Pulse-shape of Inner 

Detector data 

Likelihood that a certain event is 11C  
uses in input time and space correlations 
between subsequent muons and 
cosmogenic neutrons. 

Neutron detection:  after each ID µ, 1.6 ms gate is opened 
to detect neutrons: example with several tens of neutrons. 

n-capture 



ELECTRON-POSITRON PULSE SHAPE DISCRIMINATION 
 Critical for pep and CNO neutrinos 

Pulse shape estimator: 
normalized likelihood of the position 
reconstruction algorithm that uses light 
emission profiles for electrons. 

e- e+ 

Used to pin-down the remaining 11C(e+) 
in the TFC-subtracted spectrum. 

Single ortho-positronium event,  
in which annihilation occurs in 10 ns 
after o-Po formation  

in ~50% of the cases, e+ annihilation is delayed 
by ortho-positronium formation (τ ~3ns); 
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HIGH ENERGY REGION (HER) ANALYSIS 
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Results on 8B solar neutrinos 

•  no natural radioactivity  
expected above 5 MeV 
•  benchmark: compatibility 

with SNO and SuperK 

Analysis in 2 energy regions 

HER1  
~3-5 MeV 
FV: 266 t   

HER2  
~5-17 MeV 
FV:  227.8 t 

Backgrounds after selection cuts 
(neutron, cosmogenics, TFC(10C), 
214Bi-214Po, random coincidence)  
 
 
 
 
 
 

HER1  
ü  cosmogenic 11Be 
ü  208Tl (bulk , emanation 

and vessel surface) 
ü  γ’s from n-captures 

HER2  
ü  cosmogenic 11Be 
ü  γ’s from n-captures 

•  Almost all scintillator volume used in the analysis. 
•  Factor 2 improvement wrt PRD 82 (2010) 033006. 
•  5x lower internal 208Tl background estimated from 

212Bi-212Po coincidences within 3 m radius. 
•  Two components of the external 208Tl background: 

pure surface and due to 220Rn emanation. 
•  Identified new source of background: γ’s from 

neutrons captured on materials different than H,C. 
The source of neutrons are (α,n) reactions and 
fissions from U and Th chains. 

•  New estimation of the 11Be background compatible 
with 0. 



RADIAL FITS IN HER1 AND HER2 
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No use of energy spectra is a choice:  no assumptions on the Pee(Eν) shape 

HER1: ~3-5 MeV HER2:  ~5-17 MeV 
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RESULTS AND SYSTEMATIC ERRORS IN HER 
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Additionally studied: 
•  PDF’s radial distortion +3%. 
•  Emanation vessel shift +1%. 
•  Distortion of the emanation PDF’s. 
•  Binning dependence. 



QUEST FOR CNO SOLAR NEUTRINOS 

F. Villante et al., Phys. Lett. B 701 (2011) 

•  Nylon vessel holding the scintillator is a source of 210Po 
ü  diffusion slow -> 210Po cannot penetrate to the FV 
ü  block convection -> thermal stabilisation 

R(210Po, Dec 2011) ~1400 cpd/100 ton 
R(210Bi, Phase II) = 17.5 + 1.9 cpd/100 ton  fit with CNO constrained to SSM 

210Bi and CNO correlated 
•  external constraint on 210Bi from 210Po (time) needed 

Seasonal effect 
Thermal stabilisation 

? 

Strategy 
•  identify portion of the 

detector in which 
210Bi rate low, stable, 
and known 

•  additional water 
extraction campaign 
for further 210Bi 
reduction 

nPo (t) = [nPo,0 – nBi] exp(-t/τPo) + nB:  at regime R(210Po) = R(210Bi)   
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GEONEUTRINOS 



GEONEUTRINOS AND WHY TO STUDY THEM 

Abundance of 
radioactive 

elements 

Radiogenic  
heat 

(Main goal) 

Distribution of radioactive elements 
(models) 

Geoneutrino flux To predict: 
From geoneutrino 
measurement: 

Nuclear physics 

  (3-25 TW) 

can help! 

 Surface heat flux: 47 + 3 TW 
 

(based on  the measured 
temperature gradients  
along 30,000 bore holes around the globe) 

Earth shines in antineutrinos: flux ~106 cm-2 s-1  
leaving freely and instantaneously the Earth interior 

(to compare: solar neutrino (NOT antineutrino!) flux ~1010 cm-2 s-1) 



GEONEUTRINO RESULTS AND ANALYSIS 
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PRD 92 (2015) 031101 (R)  

ü    Non-antineutrino background  almost invisible! 
ü  5.5 x 1031 target-proton year 

~1 MeV ~7 MeV 

Borexino 2015: 23.7 +6.5 (stat) +0.9 (sys) geonu’s 

First geologically significant results available but 
more statistics needed! 
Important new tool for future experiments 

> 5σ CL 

•  Unbinned maximum likelihood fit of 77 candidates. 
•  Non-antineutrino background almost negligible (< 

1 event) and constrained in the fit. 
•  Reactor background left free in the fit: results 

compatible with expectations. 
•  2 kinds of fit: 

ü  U/Th left free; 
ü  U/Th constrained to chondritic value. 

•  Statistical error largely dominates systematic 
uncertainty (reactor spectra, uncertainty of 
backgrounds, and detector response). 

New update with ~20% precision under preparation. 



BACKGROUNDS 
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Limestone rock 

µ µ µ µ

n 
n 

n 
n, 
9Li,8He 

1) Cosmogenic background 

•  9Li and 8He (T1/2 = 119/178 ms)      
• decay: β(prompt) + neutron (delayed); 
•  fast neutrons  
  scattered protons (prompt) 
Estimated by studying coincidences detected 
AFTER muons. 

2) Accidental coincidences; 
Estimated from OFF-time coincidences. 

3) Due to the internal radioactivity:  
 (α, n) reactions: 13C(α, n)16O  
Prompt: scattered proton, 12C(4.4 MeV) & 16O (6.1 MeV)  
Estimated from 210Po(α) and 13C contaminations, 
cross section. 

A) Reactor antineutrino background 

B) Non-antineutrino background 



KEY POINTS AND SUMMARY 
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Solar neutrinos: 
Spectral multivariate fit (radial and pulse shape e+/e- distributions):  

•  pp neutrinos: 14C and its pile-up. 
•  7Be neutrinos: 210Bi out of equilibrium with 238U chain, 85Kr; low levels of 238U and 232Th. 
•  pep neutrinos: cosmogenic 11C(e+): TFC technique and e+/e- discrimination.  
•  CNO neutrinos: cosmogenic 11C(e+), correlations with 210Bi and pep (pp/pep ratio constraint) 

Radial fit: 
•  8B neutrinos: cosmogenics and external backgrounds. 

Geoneutrinos: 
•  Statistics is an issue -> large detectors. 
•  Cosmogenic 9Li-8He as (β + neutron) emitters: depth of the laboratory. 
•  210Po out of equilibrium -> danger of (α, n) background. 
•  Reactor antineutrinos. 
•  Key: local geology to subtract the crustal (to get the mantle) contribution. 
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Thank you!

Victoria, BC, Canada, October 2018 
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Back up slides
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SENSITIVITY STUDIES 
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