Origin of Neutrino Masses

Shun Zhou (IHEP, Beijing)

NNN18, TRIUMF, Vancouver, November 1-3, 2018

Open Questions in Neutrino Physics

- Normal or Inverted (sign of Δm_{32}^2 ?)
- Leptonic CP Violation ($\delta = ?$)
- Octant of θ₂₃ (> or < 45°?)
- Absolute Neutrino Masses ($m_{\text{lightest}} = 0$?)
- Majorana or Dirac Nature ($v = v^{C}$?)
- Majorana CP-Violating Phases (how?)
- Extra Neutrino Species
- Exotic Neutrino Interactions
- Other LNV & LFV Processes
- Leptonic Unitarity Violation

- Origin of Neutrino Masses
- Flavor Structure (Symmetry?)
- Quark-Lepton Connection
- Relations to DM, BAU, or NP

Why Massless Neutrinos in the SM?

- Discovery of parity violation in weak interactions
- Two-component theory (Lee-Yang/Salam/Landau, 57)
- Determination of the helicity of neutrinos

Maximal parity violation (V-A)			
Chirality: LH for ${oldsymbol \nu}$	RH for $\overline{\nu}$		
$\nu_{ m L}$	$\overline{\nu}_{\mathrm{R}}$		
Helicity: LH for $\boldsymbol{\nu}$	RH for $\overline{\nu}$		
$\lambda(\nu) = -1$	$\lambda(\overline{\nu}) = +1$		

Just to simply identify them:

Massless Weyl Fermions

Helicity of Neutrinos*

M. GOLDHABER, L. GRODZINS, AND A. W. SUNYAR Brookhaven National Laboratory, Upton, New York (Received December 11, 1957)

A COMBINED analysis of circular polarization and resonant scattering of γ rays following orbital electron capture measures the helicity of the neutrino. We have carried out such a measurement with Eu^{152m}, which decays by orbital electron capture. If we assume the most plausible spin-parity assignment for this isomer compatible with its decay scheme, $^10-$, we find that the neutrino is "left-handed." i.e., $\sigma_v \cdot \hat{\rho}_v = -1$ (negative helicity).

Massive Neutrinos: Dirac vs. Majorana

Now that neutrinos are massive particles, either Dirac or Majorana

Dirac Neutrinos			Active compone	Active components		
		LH	RH	L	Η	RH
_	Particle	$\nu_{\rm L}$	$\nu_{\rm R}$	Particle 1	'L	
_	Antiparticle	$\nu_{\rm R}^{\rm C}$	$\nu_{\rm L}^{\rm C}$	Antiparticle		$\nu_{\rm L}^{\rm C}$

Majorana (1937)

Majorana Neutr	inos
$oldsymbol{ u} = oldsymbol{ u}_{\mathrm{L}} + oldsymbol{ u}_{\mathrm{L}}^{\mathrm{C}}$ L Particle	.H RH V _L V ^C _L
L is v	violated

Massive Dirac neutrinos:

Lepton number conservation

four degrees of freedom

Massive Majorana Neutrinos:

Lepton number violation

two degrees of freedom

Baryon and Lepton Number Violation

Unified Electroweak Theory with the $SU(2)_L xU(1)_Y$ gauge symmetry

	Particle content <i>minimality</i>	Particle content	Weak isospin ${\cal I}^3$	Hypercharge Y	Electric charge ${\cal Q}$	
		$Q_{ m L} \equiv egin{pmatrix} u_{ m L} \ d_{ m L} \end{pmatrix}, egin{pmatrix} c_{ m L} \ s_{ m L} \end{pmatrix}, egin{pmatrix} t_{ m L} \ b_{ m L} \end{pmatrix}$	$\begin{pmatrix} +1/2 \\ -1/2 \end{pmatrix}$	+1/6	$\begin{pmatrix} +2/3 \\ -1/3 \end{pmatrix}$	
	Symmetries	$\ell_{\rm L} \equiv \begin{pmatrix} \nu_{e\rm L} \\ e_{\rm L} \end{pmatrix}, \begin{pmatrix} \nu_{\mu\rm L} \\ \mu_{\rm L} \end{pmatrix}, \begin{pmatrix} \nu_{\tau\rm L} \\ \tau_{\rm L} \end{pmatrix}$	$\begin{pmatrix} +1/2 \\ -1/2 \end{pmatrix}$	-1/2	$\begin{pmatrix} 0\\ -1 \end{pmatrix}$	
	50(2)/0(1)	$U_{\rm R} \equiv u_{\rm R}, \ c_{\rm R}, \ t_{\rm R}$	0	+2/3	+2/3	
	Renormalizability <i>predictive</i>	$D_{\mathrm{R}} \equiv d_{\mathrm{R}}, \; s_{\mathrm{R}}, \; b_{\mathrm{R}}$	0	-1/3	-1/3	
		$E_{\rm R} \equiv e_{\rm R}, \ \mu_{\rm R}, \ \tau_{\rm R}$	0	-1	$^{-1}$	

B and L are accidentally conserved in the SM at the classical level, but are violated at the quantum level ('t Hooft, 76)

Only B-L, L_e - L_μ , L_μ - L_τ can be conserved

Global symmetries are likely to be only approximate, as in black hole physics/ quantum gravity (Witten, 1710.01791)

Baryon and Lepton Number Violation

Grand Unified Theories: SU(3)_CxSU(2)_LxU(1)_Y gauge symmetries Unification of quarks and leptons

SU(5) GUT: Georgi & Glashow, 1974

Proton decay: $p \rightarrow e^+ + \pi^0$

Both B and L are violated by one unit in the minimal SU(5) GUTs, and B-L can be either conserved or violated (Mohapatra, 1986)

SO(10) GUTs naturally accommodate RH neutrinos and Majorana neutrino masses (Georgi, 1975; Fritzsch & Minkowski, 1975)

SM: An Effective Theory @ Low Energies 6

Weinberg (1979): The SM is a low-energy effective theory for electroweak interactions

$$\mathcal{L} = \mathcal{L}_{SM} + \kappa_{\nu} \frac{\left(\overline{\boldsymbol{\ell}_{L}} \widetilde{\boldsymbol{H}}\right) \cdot \left(\widetilde{\boldsymbol{H}}^{T} \boldsymbol{\ell}_{L}^{C}\right)}{2\Lambda} + \mathcal{O}\left(\frac{1}{\Lambda^{2}}\right)$$

 $M_{\nu} = \kappa_{\nu} rac{
u^2}{\Lambda} \sim 0.1 \,\mathrm{eV}$

Unique dimension-5 operator for neutrino masses

$$v \sim 10^2 \text{ GeV}$$

 $\Lambda \sim 10^{10 \cdots 14} \; GeV$

Extremely high energy scale!!!

Several dimension-6 operators for proton decays (Wilczek & Zee, 79)

Type-I Seesaw **Type-II Seesaw Type-III Seesaw** H^0 H^0 H^0 T^0 Y_T Realization of H^0 H^0 Δ^0 the Weinberg N_{R} operator in $\overline{\nu}_{\text{L}} = Y_{\nu}$ $\overline{Y_{
u}^{T}}$ $\overline{\mathcal{V}_{\text{L}}}$ ${\cal V}_{\scriptscriptstyle
m L}$ $Y_{\scriptscriptstyle
m A}$ ${\cal V}_{\scriptscriptstyle
m L}$ ${\cal V}_{
m L}$ renormalizable $M_{\nu} \approx -v^2 Y_T \frac{1}{M_T} Y_T^T$ $M_{\nu} \approx \lambda_{\Delta} Y_{\Delta} \frac{v^2}{M_{\Lambda}}$ $M_{\nu}\approx -v^2Y_{\nu}\frac{1}{M_{\nu}}Y_{\nu}^T$ theories

Where is the Seesaw Scale?

In the type-I seesaw models, the scale of RH neutrino masses is not fixed and can in principle be a very wide range

GUT	Unification	Xing, U9		
	Leptogenesis •	• Criteria for a reasonable seesaw scale?		
		Testability	Naturalness	
		Uniqueness	Hierarchy	
TeV	Energy frontier: Collider searches •	Close to a fundame	ental energy scale	
GeV	Leptogenesis via GUT scale: heavy Majorana vs			
	N OSCILIATIONS	(only i	ndirect tests)	
MeV	Intensity frontier: LNV rare decays	hierarc	hy problem	
	,	TeV scale: heavy l	Majorana vs	
keV	Warm Dark Matter X-ray line ß decays	(direct collider searches) fine-tuning in couplings		
	X luy line, p decuys		5	
eV	Anomalies of oscillat Cosmology Giunti e	tion experiments t al., 18	Exp. DiscoveriesOther new ideas	

A natural seesaw scale (e.g., type-I)

Close to an energy scale of fundamental physics: the GUT scale 10¹⁶ GeV

Seesaw-induced hierarchy problem

Vissani, 98; Casas et al., 04; Abada et al., 07

$$\delta M_{H}^{2} = \begin{cases} -\frac{y_{i}^{2}}{8\pi^{2}} \left(\Lambda^{2} + M_{i}^{2} \ln \frac{M_{i}^{2}}{\Lambda^{2}}\right) & \text{(Type I)} \\ \frac{3}{16\pi^{2}} \left[\lambda_{3} \left(\Lambda^{2} + M_{\Delta}^{2} \ln \frac{M_{\Delta}^{2}}{\Lambda^{2}}\right) + 4\lambda_{\Delta}^{2} M_{\Delta}^{2} \ln \frac{M_{\Delta}^{2}}{\Lambda^{2}}\right] & \text{(Type II)} \\ -\frac{3y_{i}^{2}}{8\pi^{2}} \left(\Lambda^{2} + M_{i}^{2} \ln \frac{M_{i}^{2}}{\Lambda^{2}}\right) & \text{(Type III)} \end{cases}$$

In type-I seesaw models:

$$M_i \lesssim 10^7 \text{ GeV} \left(\frac{0.2 \text{ eV}}{m_i}\right)^{1/3}$$

for $\delta M_H^2 \sim 0.1 \text{ TeV}^2$

Low-scale Seesaw Models

Seesaw models at the EW or TeV scales

motivated by the naturalness and testability problems of conventional seesaws

Low-scale Seesaw Models

Searches for doubly-charged Higgs bosons

Chun et al., 03; Han et al., 05; Raidal et al., 07; Perez et al., 08; Cai et al., 18

10

- Depending on the triplet vev, the dominant decay channel is either leptons or W's
- Couplings directly related to neutrino masses and flavor mixing parameters
- Current constants on masses depend on branching ratios of doubly-charged Higgs decays

Beyond the Seesaw

Radiative mechanism

Zee, 80; Babu, 88; Ma, 98, 13

Model with A₄ x U(1)_D symmetries

- Tree-level mass forbidden by A₄ flavor symmetry
- Symmetry also responsible for flavor structure
- New fermions as DM

Scale-invariant extension of the SM

Coleman, E. Weinberg, 73

- Remove mass terms of scalar fields
- Radiative symmetry breaking
- Solve the hierarchy problem of SM

Fermion-Scalar vertex 4-Scalar

Generation of neutrino masses

Lindner, Schmidt, Smirnov, 14

Majorana vs. Dirac

Schechter-Valle Theorem (82): If the 0vββ decay happens, there must exist an effective Majorana neutrino mass term.

Quantitatively, the 4-loop Majorana mass from the butterfly diagram is **EXTREMELY** small:

 $\delta m_{\nu} < O(10^{-28} \text{ eV})$

(Duerr, Lindner, Merle, 11; Liu, Zhang, Zhou, 16)

12

- **Assume 0vββ decays are governed by short-distance operators**
- The Schechter-Valle (Black Box) theorem is qualitatively correct, but the induced Majorana masses are too small to be relevant for neutrino oscillations
- Other mechanisms are needed to generate neutrino masses

The Effective ν Mass for 0vββ Decays

13

Majorana vs. Dirac

When the temperature $T \sim 1$ MeV, neutrinos became decoupled from the thermal bath, and formed a v background in the Universe. Today relic neutrinos are nonrelativistic, and their number density is 56 cm⁻³ per flavor, as predicted by the standard model of cosmology.

no energy threshold on incident v's mono-energetic outgoing electrons

kinetic energy of electrons

 m_{ν}

sterile v's

Majorana vs. Dirac

- first experiment
 100 g of tritium
 graphene target
 planned energy
 resolution 0.15 eV
- ★ CvB capture rate $\Gamma^{\rm D}_{\rm C\nu B} \sim 4 \text{ yr}^{-1}$ $\Gamma^{\rm M}_{\rm C\nu B} \sim 8 \text{ yr}^{-1}$ D = Dirac
- M = Majorana

PTOLEMY Princeton (Pon-) Tritium (Tecorvo) Observatory for Light, Early-Universe, Massive-Neutrino Yield (Betts et al, arXiv:1307.4738)

Exploring the Origin of Neutrino Masses 16

- A decisive signal will be the discovery of B and L number violation (e.g., nucleon decays & 0vββ decays)
- Try different ideas, such as the detection of CvB and atomic/molecular systems

Exploring the Origin of Neutrino Masses 16

- A decisive signal will be the discovery of B and L number violation (e.g., nucleon decays & 0vββ decays)
- Try different ideas, such as the detection of CvB and atomic/molecular systems

Thanks a lot for your attention!