Higher energy physics at Hyper-Kamiokande

Higher energy v physics at HK

Accelerator neutrinos (~0.6GeV)

- L=295km (fixed baseline)
- Upgraded J-PARC v beam
- well understood beam at oscillation max.

complementary

- Atmospheric neutrinos (0.1GeV~TeV)
 - 10km < L < 104km
 - Resonant oscillations due to Earth's matter effects
 - cover wide range of oscillation parameter space (e.g. NSI search)

Astrophysical neutrino sources (GeV~TeV)

- Neutrino from point sources: galactic centre, sun, earth
- AGN/GRB/neutron star merger, dark matter annihilation
- complementary to IceCube/KM3NeT (~TeV and above)

Nucleon decay search (~GeV)

Probe to Grand Unified Theory at very high energy scale

Water Cherenkov detector for GeV scale

- Cherenkov ring
 - Particle identification (>99% efficiency)
 - Momentum reconstruction
 - Multi-rings for non-QE, proton decay

HK long baseline project

J-PARC neutrino beam

- off-axis v beam peaked at ~600MeV (oscillation maximum)
 - CCQE dominant: suitable for water Cherenkov detector
 - Narrow band beam to suppress NC π^0 and CC non-QE
- Recent news from T2K
 - 485kW stable run (500kW achieved)
 - Protons on target (POT) accumulated (1:1 for v and anti-v mode)
 - Hint of CP violation (δ_{CP}~—90° favoured)

Good opportunity for CP measurement at HK

J-PARC neutrino beam

- Upgrades plan for HK (500kW → 1.3MW)
 - Replace MR power supply
 - Replace RF system
 - Upgrade injection/extraction devices
 - Upgrade the beam monitors

Doubles repetition cycle (2.5s → 1.2s)

- External measurements help to suppress flux systematic errors
 - Flux uncertainty dominated by hadron production model

Measurement of CP asymmetry with neutrino and antineutrino beams

 CP violation emerges as different oscillation probabilities in neutrino and anti-neutrino

— Normal mass hierarchy (NH)

-----Inverted mass hierarchy (IH)

- Comparison of oscillation probabilities: $P(\nu_{\mu} \rightarrow \nu_{e})$ vs. $P(\bar{\nu_{\mu}} \rightarrow \bar{\nu_{e}})$
 - Up to ~30% variation at δ_{CP} ~-90° in NH wrt sin δ_{CP} =0

Expected signal at HK

Normal hierarchy

Expected signals and background in 10 years with single tank + 1.3MW beam

	Appearance signal	Wrong sign signal	Beam background	NC background
Neutrino mode	1640	20	260	130
Anti-neutrino mode	1180	210	320	200 ₇

Prospects for CP violation measurements

- Exclusion of $\sin \delta_{CP} = 0$
 - -8σ for $\delta_{CP} = -90^{\circ}$ (T2K favoured)
 - Good opportunity to make discovery of neutrino CP violation at > 5σ
- Measurement of neutrino δ_{CP}
 - 23° for $\delta_{CP} = 90^{\circ}$
 - 7° for $\delta_{CP} = 0^{\circ}$ Input to Investigate origin of CPV

Precision measurement of v_{μ} disappearance

- $\delta(\Delta m^2_{32}) \sim 1.4 \times 10^{-5} \text{eV}^2$
- $\delta(\sin^2 2\theta_{23}) \sim 0.006$ at $\sin^2 2\theta_{23} = 0.45$ ~ 0.017 at $\sin^2 2\theta_{23} = 0.50$

	CCQE	CCQE	CC non-QE	Others
Neutrino mode	6040	350	3180	520
Anti-neutrino mode	2700	6100	4300	610 9

DUNE and HyperK

- Hyper-Kamiokande
 - Major component is QE: E_{ν} determined from (p,θ) of outgoing lepton
 - Suppress non-QE/NC by single Cherenkov ring and off-axis beam
- DUNE
 - Resonance and DIS dominant: E_v from total lepton and hadron energy
 - Wide band beam and detect all charged particles by Liquid Argon¹

2nd HyperK detector in Korea

- + Longer baseline more matter effects sensitive to mass hierarchy
- + 2nd oscillation maximum x2 CP enhancement 1/9 in statistics similar sensitivity as T2HK less sensitive to systematics

DUNE

Hyper-K

Mass Hierarchy Sensitivity

Sunny Seo, SNU

Unique benefits of a Korean Detector

Solid lines: Normal Hierarchy Dotted lines: Inverted Hierarchy

Blue: Energy of peak QE rate Red: median of high-energy tail

Green: "low-energy"

Detector in Korea measures parameters in a very different way

Systematic uncertainties

Discovery is difficult when experiment is limited by systematics:

systemetics will not behave like gaussian unless constrained by data.

- Reduction of systematic uncertainties is essential in CP violation measurement
 - Neutrino-nucleus is the most challenging systematics
 - Data driven systematic error handling is required
 - Intermediate water Cherenkov detector

Intermediate water Cherenkov detector

Intermediate water Cherenkov detector

- 1kton(10m) scale water Cherenkov detector at ~1km distance
 - 10m diameter to contain muons
 - near/far variation and pile-up reduced at 1km
 - Small water Cherenkov:
 - → Higher granularity with mPMT modules
 - Neutron measurement with Gd loading

mPMT R&D actively on-going for IWCD and HK

Atmospheric neutrinos

- Flux is up/down symmetric
- Normalization uncertainties cancelled in up/down ratio

Three flavour oscillation

Cosine Zenith Angle

-0.5

Sub-GeV μ-like 0-dcy e

cosine zenith

 $^{2}\Theta^{23} = 0.4$

1.05

0.95^L

Ratio

0.7

0.6

0.5

0.4

0.3

0.2

0

10²

Neutrino Energy [GeV]

Sensitive to δ_{CP} , θ_{23} octant ⇒parameter degeneracy

Sub-GeV e-like 0-dcy e

 Benefit from combination with beam measurements

18

Mass hierarchy

θ_{23} octant

- Mass hierarchy
 - Super-K favours normal hierarchy at ~2σ level
 - 3σ mass hierarchy after 5 years of HK ($\sin^2\theta_{23} = 0.5$)
- θ_{23} octant
 - Resolve θ_{23} octant in 5-10 years or nearly maximal θ_{23} mixing

Astrophysical neutrinos

Hyper-K has potential to expand the window in GeV-TeV neutrinos

- WIMP annihilation from the galactic centre, Sun and Earth
- Gamma-Ray Burst Jets
- Gravitational-wave sources (multi-messenger)

Backgrounds: atmospheric neutrinos

- Excellent directionality (1-3 degrees) to look for point source.
 - burst timing gives another handle
- Electron neutrinos detection, an order of magnitude less backgrounds

GeV-TeV neutrino in SK

x8 more brightness for Hyper-K Improved pointing with better reconstruction will further reduce the atmospheric backgrounds

Proton decay search

- $p \rightarrow e^+ + \pi^0$ mediated by gauge boson
 - Observed as 2 or 3 ring e-like
 - Momentum balance and proton mass selection in particular for free proton decays

 $p \rightarrow v + K^{+}$ mediated by SUSY particle

- p_K ~ 339MeV below Cherenkov threshold
 - → search for two body decay of K⁺
 - $K^+ \rightarrow \nu + \mu^+$ (BR: 64%) (+ de-excitation γ)
 - $K^+ \rightarrow \pi^+ + \pi^- \text{ (BR: 21\%)}$
- Improvement of multi-ring reconstruction to enhance acceptance and rejection
- Atmospheric neutrino background rejection by neutron tag

Proton decay search

- Extend proton decay search for various decay modes
 - x8 Larger fiducial volume than Super-Kamiokande
 - BG free search (0.06BG/Mton · yr) by neutron tagging and improved multi-ring event reconstruction
- Sensitivity reaches ~ 10³⁵yr

Reconstruction software improvements

- Potential software developments/improvements
 - Geant-4 based Hyper-Kamiokande simulation (in progress)
 - Sophisticated multi-ring reconstruction (machine learning)
 - Use of both 20 inch PMTs and mPMT modules
 - Neutrino / antineutrino separation
 - Development of neutron tagging analysis

Summary

- Hyper-K is unique detector in subGeV to TeV range
 - High statistics data with large fiducial volume
 - Precision event reconstruction with large photo-coverage
- Rich physics targets in this higher energy region
 - Precision neutrino oscillation studies with J-PARC beam CP violation, maximal θ_{23} mixing or not Further improvements by the Korean detector at 2nd oscillation max.
 - Expand oscillation studies with atmospheric neutrinos
 Larger energy range, Longer baseline, Matter effects
 → Mass hierarchy, τ appearance, Non-standard interactions
 - Nucleon decay search to 10³⁵ years in life time
 - Astrophysical neutrino search in GeV-TeV window
- · Innovative contributions are required to achieve the goal
 - Intermediate detector to constrain neutrino interactions
 - Additional detector and calibration system for detector systematics
 - Hadron production measurements for beam and atmospheric v flux
 - Event reconstruction for multi-ring events (machine learning)