Theia

International Workshop on Next-Generation Nucleon Decay and Neutrino Detectors 3rd November, 2018

Gabriel D. Orebi Gann UC Berkeley & LBNL

BERKELEY LAB

Development of new scintillators e.g. WbLS

Development of new scintillators e.g. WbLS

Development of new scintillators e.g. WbLS

Fully-equipped, deep underground labs (+ beam)

Theia at NNN, G. D. Orebi Gann

Development of new scintillators e.g. WbLS

Fully-equipped, deep underground labs (+ beam)

Theia at NNN, G. D. Orebi Gann

Development of new scintillators e.g. WbLS

top window

mcp 1

mcp 2

anode readout-

photocathode (pc)

Advanced computing & reconstruction methods J. Inst. 9, Po6012 (2014), Nucl. Inst. Methods A849, 102 (2017).**Fully-equipped**, deep Newunderground labs (+ beam) generation of large-scale, Fast, efficient low-threshold, photodetectors directional V,V detectors 4850 Level (4300 n **Proposed Laboratories** incoming photon Experiment Hall UX/ZEPLIN **R&D** opportunities LBNE Davis Campus pc gap evel 10 kT and 24 kT liquid are LUX MID inter-mcp gap **BHSU Underground Campus R&D** opportunities CASPAR anode gap **Ross Campus**

Overview

- Detector concept
- Physics Program
- Development of Detector Capabilities

Theia Detector Concept

Cherenkov / Scintillation Separation

Separation in charge, time, wavelength Methods to enhance separation:

- Ultra-fast photon detection (LAPPDs)
- Delay scintillation light
- Optimize cocktail: scintillation fraction & spectrum (fluor)
- Readout sensitivity

Cherenkov / Scintillation Separation

Separation in charge, time, wavelength Methods to enhance separation:

- Ultra-fast photon detection (LAPPDs)
- Delay scintillation light
- Optimize cocktail: scintillation fraction & spectrum (fluor)
- Readout sensitivity

Cherenkov / Scintillation Separation

Theia at NNN, G. D. Orebi Gann

Theia

- Large-scale detector (50-100 kton)
- Water-based LS target
- Fast, high-efficiency photon detection with high coverage
- Deep underground (e.g. Homestake)
- Isotope loading (Gd, Te, Li...)
- *Flexible*! Target, loading, configuration

Broad physics program!

Concept paper - <u>arXiv:1409.5864</u>

Theia

- Large-scale detector (50-100 kton)
- Water-based LS target
- Fast, high-efficiency photon detection with high coverage
- Deep underground (e.g. Homestake)
- Isotope loading (Gd, Te, Li...)
- *Flexible*! Target, loading, configuration

Broad physics program!

Concept paper - <u>arXiv:1409.5864</u>

Theia Physics Program

XXXXXXXXX

TİT

Alter

9.4.4.4.4.4

Ŧ

H

সময

auuu A A A

TİF

5 6 6 6 8 5 6 6

- I. Neutrinoless double beta decay
- 2. Solar neutrinos (solar metallicity, luminosity)
- 3. Geo-neutrinos
- 4. Supernova burst neutrinos & DSNB
- 5. Source-based sterile searches
- 6. Nucleon decay
- 7. Long-baseline physics (mass hierarchy, CP violation)

- I. Neutrinoless double beta decay
- 2. Solar neutrinos (solar metallicity, luminosity)
- 3. Geo-neutrinos
- 4. Supernova burst neutrinos & DSNB
- 5. Source-based sterile searches
- 6. Nucleon decay
- 7. Long-baseline physics (mass hierarchy, CP violation)

- I. Neutrinoless double beta decay
- 2. Solar neutrinos (solar metallicity, luminosity)
- 3. Geo-neutrinos
- 4. Supernova burst neutrinos & DSNB
- 5. Source-based sterile searches
- 6. Nucleon decay
- 7. Long-baseline physics (mass hierarchy, CP violation)

High-

Energy

Physics

Physics over 5 orders of magnitude

Nuclear

High-

Energy

Physics

Physi

- I. Neutrinoless double beta decay
- 2. Solar neutrinos (solar metallicity, luminosity)
- 3. Geo-neutrinos
- 4. Supernova burst neutrinos & DSNB
- 5. Source-based sterile searches
- 6. Nucleon decay
- 7. Long-baseline physics (mass hierarchy, CP violation)

Physics over 5 orders of magnitude

Nuclear

High-

Energy

Physics

Physi

- 71. Neutrinoless double beta decay
 - 2. Solar neutrinos (solar metallicity, luminosity)
 - 3. Geo-neutrinos
 - 4. Supernova burst neutrinos & DSNB
 - 5. Source-based sterile searches
 - 6. Nucleon decay
- ズ7.Long-baseline physics (mass hierarchy, CP violation) 🎸

Remarkably, the same detector could show that neutrinos and antineutrinos are the same, **and** that "neutrinos" and "antineutrinos" oscillate differently

11

Physics over 5 orders of magnitude

Nuclear

High-

Energy

Physics

Physics

- 71. Neutrinoless double beta decay
 - 2. Solar neutrinos (solar metallicity, luminosity)
 - 3. Geo-neutrinos
 - 4. Supernova burst neutrinos & DSNB
 - 5. Source-based sterile searches
 - 6. Nucleon decay
- ズ7.Long-baseline physics (mass hierarchy, CP violation) 🎸

Remarkably, the same detector could show that neutrinos and antineutrinos are the same, **and** that "neutrinos" and "antineutrinos" oscillate differently

50 kton water-based liquid scintillator detector High coverage with fast photon detectors Deep underground 8-m radius balloon with high-LY LS and isotope 7-m fiducial, 3% ^{nat}Te or ^{enr}Xe, 10 years Builds on critical developments by KLZ & SNO+ collaborations

Evonts / BOLy

		· 1		Livenus	/ ICOL y
			\mathbf{Signal}	Te Loading e	nr Xe Loading
		Cosmogenic	$0\nu\beta\beta$ (10 meV)	65.4	116.4
		$2\nu\beta\beta$	2 uetaeta	48.0	38.2
	着 40 m	⁸ B ν ES (α, n) External γ	8 B Solar ES (50%)	138.5	138.4
			^{10}C (92.5%)	24.6	25.4
40 m	- And - And		¹³⁰ I	48.3	
			$^{130m}\mathrm{I}$	1.7	
			^{136}Cs		0.57
			208 Tl	0.02	0.002
		Internal U cha	²¹⁴ Bi (99.9%)	4.0	4.4
		Internal Th chain	Balloon ²¹⁴ Bi (50%)	24.0	27.4
			Balloon 208 Tl (50%)	0.25	0.14
	Miller .	SNO+ Collaboration	Total	289.5	234.5
	3 - 4				

Phys.Rev.Lett. 110:062502 (2013); Adv.High Energy Phys. 2016 (2016) 6194250; Phys. Rev. D 87 no. 7:071301 (2013)

Long-Baseline Program

- Large-scale detector at Homestake, in the LBNF beam
- Complementary program to LArTPC (DUNE)
- Build on WCD studies (arXiv:1204.2295)

40 kt LArTPC

100 kt WCD

----- 50 kt WCD

Plus advantages from low-threshold scintillation

- Assumes 75% reduction in NC background relative to SK-I
- Uses only single-ring samples

Mass Hierarchy Sensitivity

,**30**, √×

20

15

10

Normal Hierarchy

3.5+3.5 v+v years

 $sin^2 2\theta_{13} = 0.085$ $sin^2 \theta_{23} = 0.45$

Testing the existence of GUTs with THEIA:

- Large size (statistics), deep location, very clean
- n tagging (low threshold plus potential isotope loading)
- Sub-Cherenkov threshold detection

Testing the existence of GUTs with THEIA:

- Large size (statistics), deep location, very clean
- n tagging (low threshold plus potential isotope loading)
- Sub-Cherenkov threshold detection

Figs from arXiv:1409.5864, assume 100t FV; studies based on Phys. Rev. D 72,075014 (2005); LAr from JHEP 0704:041,2007

Testing the existence of GUTs with THEIA:

- Large size (statistics), deep location, very clean
- n tagging (low threshold plus potential isotope loading)
- Sub-Cherenkov threshold detection

Figs from arXiv:1409.5864, assume 100t FV; studies based on Phys. Rev. D 72,075014 (2005); LAr from JHEP 0704:041,2007

Testing the existence of GUTs with THEIA:

- Large size (statistics), deep location, very clean
- n tagging (low threshold plus potential isotope loading)
- Sub-Cherenkov threshold detection

Figs from arXiv:1409.5864, assume

72,075014 (2005); LAr from [HEP

0704:041.2007

100t FV; studies based on Phys. Rev. D

Solar Neutrinos with Theia

- Dominant background to CNO v measurement: ²¹⁰Bi
- Theia offers unique low-threshold, directional detection

Solar Neutrinos with Theia

- Dominant background to CNO v measurement: ²¹⁰Bi
- Theia offers unique low-threshold, directional detection

Signal	Normalization sensitivity (%)
⁸ Β ν	0.4
⁷ Be ν	0.4
pep v	3.8
CNO v	5.3
²¹⁰ Bi	0.1
¹¹ C	11.5
⁸⁵ Kr	10.5
⁴⁰ K	0.04
³⁹ Ar/ ²¹⁰ Po	21.9
²³⁸ U chain	0.02
²³² Th chain	0.05

Eur. Phys. J. C (2018) 78: 435

Solar Neutrinos with Theia

- Dominant background to CNO v measurement: ²¹⁰Bi
- Theia offers unique low-threshold, directional detection

Theia at NNN, G. D. Orebi Gann

Theia Spectral Sensitivity

1996, W.C. Haxton: isotope loading for CC interaction (water)

"Salty water Cherenkov detectors" W.C. Haxton PRL 76 (1996) 10 CC detection in WbLS: high-precision spectral measurement to low energy ⇒ search for new physics, solar metallicity, MSW effect

Detector: 30kt fiducial 1% 7Li by mass Conservative 100 pe/MeV

arXiv:1409.5864

Theia Spectral Sensitivity

1996, W.C. Haxton: isotope loading for CC interaction (water)

"Salty water Cherenkov detectors" W.C. Haxton PRL 76 (1996) 10 CC detection in WbLS: high-precision spectral measurement to low energy ⇒ search for new physics, solar metallicity, MSW effect

Antineutrino Detection

- Detect via IBD
- High light yield allows enhanced n tag : 2.2 MeV γ from ¹H
 - Suppress single-event background that limits water Cherenkov
- Higher detection efficiency than Gd-H₂O due to high scint. yield
- Reduce NC background that limits LS detectors

Antineutrino Detection

- Detect via IBD
- High light yield allows enhanced n tag : 2.2 MeV γ from ¹H
 - Suppress single-event background that limits water Cherenkov
- Higher detection efficiency than Gd-H₂O due to high scint. yield
- Reduce NC background that limits LS detectors

Geo Neutrinos

- Current total geo-v exposure: < 10kt-yr (KL + Borexino)
 - **THEIA:** large statistics in a complementary geographical location

Antineutrino Detection

- Detect via IBD
- High light yield allows enhanced n tag : 2.2 MeV γ from ¹H
 - Suppress single-event background that limits water Cherenkov
- Higher detection efficiency than Gd-H₂O due to high scint. yield
- Reduce NC background that limits LS detectors

Geo Neutrinos

- Current total geo-v exposure: < 10kt-yr (KL + Borexino)
 - **THEIA:** large statistics in a complementary geographical location

DSNB

- Enhanced n tag
- Reduced NC background
- Most sensitive search to-date
- Plus NaCl for v signal

Supernova

Neutrinos

Neutrino	Percentage of	Type of
Reaction	Total Events	Interaction
$\overline{\nu}_e + p \to n + e^+$	88%	Inverse Beta
$\nu_e + e^- \rightarrow \nu_e + e^-$	1.5%	Elastic Scattering
$\overline{\nu}_e + e^- \rightarrow \overline{\nu}_e + e^-$	<1%	Elastic Scattering
$\nu_x + e^- \rightarrow \nu_x + e^-$	1%	Elastic Scattering
$\nu_e + {}^{16}O \to e^- + {}^{16}F$	2.5%	Charged Current
$\overline{\nu}_e + {}^{16}O \rightarrow e^+ + {}^{16}N$	1.5%	Charged Current
$\nu_x + {}^{16}O \rightarrow \nu_x + O^*/N^* + \gamma$	5%	Neutral Current

- ~15k events for SN at 10 kpc (50 kt volume)
- ~90% events are IBD

Neutrino	Percentage of	Type of
Reaction	Total Events	Interaction
$\overline{\nu}_e + p \to n + e^+$	88%	Inverse Beta
$\nu_e + e^- \rightarrow \nu_e + e^-$	1.5%	Elastic Scattering
$\overline{\nu}_e + e^- \rightarrow \overline{\nu}_e + e^-$	<1%	Elastic Scattering
$\nu_x + e^- \rightarrow \nu_x + e^-$	1%	Elastic Scattering
$\nu_e + {}^{16}O \to e^- + {}^{16}F$	2.5%	Charged Current
$\overline{\nu}_e + {}^{16}O \rightarrow e^+ + {}^{16}N$	1.5%	Charged Current
$\nu_x + {}^{16}O \rightarrow \nu_x + O^*/N^* + \gamma$	5%	Neutral Current

- ~15k events for SN at 10 kpc (50 kt volume)
- ~90% events are IBD

Neutrino	Percentage of	Type of
Reaction	Total Events	Interaction
$\overline{\nu}_e + p \to n + e^+$	88%	Inverse Beta
$\nu_e + e^- \rightarrow \nu_e + e^-$	1.5%	Elastic Scattering
$\overline{\nu}_e + e^- \rightarrow \overline{\nu}_e + e^-$	<1%	Elastic Scattering
$\nu_x + e^- \rightarrow \nu_x + e^-$	1%	Elastic Scattering
$\nu_e + {}^{16}O \to e^- + {}^{16}F$	2.5%	Charged Current
$\overline{\nu}_e + {}^{16}O \rightarrow e^+ + {}^{16}N$	1.5%	Charged Current
$\nu_x + {}^{16}O \rightarrow \nu_x + O^*/N^* + \gamma$	5%	Neutral Current

- ~15k events for SN at 10 kpc (50 kt volume)
- ~90% events are IBD

Neutrino	Percentage of	Type of
Reaction	Total Events	Interaction
$\overline{\nu}_e + p \to n + e^+$	88%	Inverse Beta
$\nu_e + e^- \rightarrow \nu_e + e^-$	1.5%	Elastic Scattering
$\overline{\nu}_e + e^- \rightarrow \overline{\nu}_e + e^-$	<1%	Elastic Scattering
$\nu_x + e^- \rightarrow \nu_x + e^-$	1%	Elastic Scattering
$\nu_e + {}^{16}O \to e^- + {}^{16}F$	2.5%	Charged Current
$\overline{\nu}_e + {}^{16}O \rightarrow e^+ + {}^{16}N$	1.5%	Charged Current
$\nu_x + {}^{16}O \rightarrow \nu_x + O^*/N^* + \gamma$	5%	Neutral Current

- Enhanced n tag via low threshold scintillation
- Gd reduces n-cap time delay (200 μ s \rightarrow 20 μ s) \Rightarrow reduce pile up

- ~15k events for SN at 10 kpc (50 kt volume)
- ~90% events are IBD

Neutrino	Percentage of	Type of
Reaction	Total Events	Interaction
$\overline{\nu}_e + p \to n + e^+$	88%	Inverse Beta
$\nu_e + e^- \rightarrow \nu_e + e^-$	1.5%	Elastic Scattering
$\overline{\nu}_e + e^- \rightarrow \overline{\nu}_e + e^-$	<1%	Elastic Scattering
$\nu_x + e^- \rightarrow \nu_x + e^-$	1%	Elastic Scattering
$\nu_e + {}^{16}O \to e^- + {}^{16}F$	2.5%	Charged Current
$\overline{\nu}_e + {}^{16}O \rightarrow e^+ + {}^{16}N$	1.5%	Charged Current
$\nu_x + {}^{16}O \rightarrow \nu_x + O^*/N^* + \gamma$	5%	Neutral Current

- Enhanced n tag via low threshold scintillation
- Gd reduces n-cap time delay (200 μ s \rightarrow 20 μ s) \Rightarrow reduce pile up
- IBD tag allows extraction of additional signals

- ~15k events for SN at 10 kpc (50 kt volume)
- ~90% events are IBD

Neutrino	Percentage of	Type of
Reaction	Total Events	Interaction
$\overline{\nu}_e + p \to n + e^+$	88%	Inverse Beta
$\nu_e + e^- \rightarrow \nu_e + e^-$	1.5%	Elastic Scattering
$\overline{\nu}_e + e^- \rightarrow \overline{\nu}_e + e^-$	<1%	Elastic Scattering
$\nu_x + e^- \rightarrow \nu_x + e^-$	1%	Elastic Scattering
$\nu_e + {}^{16}O \to e^- + {}^{16}F$	2.5%	Charged Current
$\overline{\nu}_e + {}^{16}O \rightarrow e^+ + {}^{16}N$	1.5%	Charged Current
$\nu_x + {}^{16}O \rightarrow \nu_x + O^*/N^* + \gamma$	5%	Neutral Current

- Enhanced n tag via low threshold scintillation
- Gd reduces n-cap time delay (200 μ s \rightarrow 20 μ s) \Rightarrow reduce pile up
- IBD tag allows extraction of additional signals
- Bkg reduction for ES, doubling pointing accuracy

- ~15k events for SN at 10 kpc (50 kt volume)
- ~90% events are IBD

Neutrino	Percentage of	Type of
Reaction	Total Events	Interaction
$\overline{\nu}_e + p \to n + e^+$	88%	Inverse Beta
$\nu_e + e^- \rightarrow \nu_e + e^-$	1.5%	Elastic Scattering
$\overline{\nu}_e + e^- \rightarrow \overline{\nu}_e + e^-$	<1%	Elastic Scattering
$\nu_x + e^- \rightarrow \nu_x + e^-$	1%	Elastic Scattering
$\nu_e + {}^{16}O \to e^- + {}^{16}F$	2.5%	Charged Current
$\overline{\nu}_e + {}^{16}O \rightarrow e^+ + {}^{16}N$	1.5%	Charged Current
$\nu_x + ^{16}O \rightarrow \nu_x + O^*/N^* + \gamma$	5%	Neutral Current

- Enhanced n tag via low threshold scintillation
- Gd reduces n-cap time delay (200 μ s \rightarrow 20 μ s) \Rightarrow reduce pile up
- IBD tag allows extraction of additional signals
- Bkg reduction for ES, doubling pointing accuracy
- ID CC & monoE γ from NC \Rightarrow sensitive to burst T & subsequent ν mixing

- ~15k events for SN at 10 kpc (50 kt volume)
- ~90% events are IBD

Highly complementary to v_e-dominated LAr signal

Neutrino	Percentage of	Type of
Reaction	Total Events	Interaction
$\overline{\nu}_e + p \to n + e^+$	88%	Inverse Beta
$\nu_e + e^- \rightarrow \nu_e + e^-$	1.5%	Elastic Scattering
$\overline{\nu}_e + e^- \rightarrow \overline{\nu}_e + e^-$	<1%	Elastic Scattering
$\nu_x + e^- \rightarrow \nu_x + e^-$	1%	Elastic Scattering
$\nu_e + {}^{16}O \to e^- + {}^{16}F$	2.5%	Charged Current
$\overline{\nu}_e + ^{16}O \rightarrow e^+ + ^{16}N$	1.5%	Charged Current
$\nu_x + ^{16}O \rightarrow \nu_x + O^*/N^* + \gamma$	5%	Neutral Current

- Enhanced n tag via low threshold scintillation
- Gd reduces n-cap time delay (200 μ s \rightarrow 20 μ s) \Rightarrow reduce pile up
- IBD tag allows extraction of additional signals
- Bkg reduction for ES, doubling pointing accuracy
- ID CC & monoE γ from NC \Rightarrow sensitive to burst T & subsequent ν mixing

Early warning (PR value)

Talk by M.Yeh [Thurs pm] WbLS Development

Theia at NNN, G. D. Orebi Gann

Poster by V. Fishcer

Talks by V. Fischer, S. Qian, L. Wen, A. Lyashenko, J. Kameda, T. Lindner Photon Sensor Development

Nucl. Inst. Meth. Phys. Res. A. Volume 814, 19-32, (April 2016); Nucl. Inst. Meth. Phys. Res. A. (Oct. 2016)

PRC 95 055801 (2017)

CHESS: CHErenkov-Scintillation Separation

Ring-imaging experiment

Time- and charge-based separation in LAB/PPO

Eur. Phys. J. C (2017) 77:811

	LAB (time)	LAB (charge)	LAB/PPO (time)	LAB/PPO (charge)
nerenkov etection fficiency	83 ± 3 %	96 ± 2 %	70 ± 3 %	63 ± 8 %
intillation tamination	11 ± 1 %	6±3%	36 ± 5 %	38 ± 4 %

PRC 95 055801 (2017)

CHESS: CHErenkov-Scintillation Separation

Ring-imaging experiment

Time- and charge-based separation in LAB/PPO

Eur. Phys. J. C (2017) 77:811

	LAB (time)	LAB (charge)	LAB/PPO (time)	LAB/PPO (charge)
herenkov etection fficiency	83 ± 3 %	96 ± 2 %	70 ± 3 %	63 ± 8 %
intillation tamination	11 ± 1 %	6 ± 3 %	36 ± 5 %	38 ± 4 %

CHESS Results: WbLS

Time Profile

PRELIMINARY

Time Profile

Extract microphysical parameters by fitting to MC model Cerenkov 10^{-1} 90Sr source, single pe regime, detailed MC Scintillation Reemission 10^{-2} Calibrate method using well-understood LAB/PPO target DATA Time profile model: 3 exp. decay + rise time Preliminary $\rho(t) \propto (1 - e^{-t/\tau_r}) \times \sum_{i}^{3} A_i e^{-t/\tau_i} \begin{cases} \tau_r = 0.7 \text{ ns} \\ \tau_1 = 4.3 \text{ ns} \\ \tau_2 = 16 \text{ ns} \\ \tau_3 = 166 \text{ ns} \end{cases}^{\text{H. M. O'Keeffe et al.}}_{\text{Add0, 119 (2011)}}$ 10^{-3} 10^{-1} Good agreement between data and model "out of the box" 0 20 40 Time (ns)

Fit for scintillation time profile of WbLS

PRELIMINARY

Time Profile

Extract microphysical parameters by fitting to MC model Cerenkov 10^{-1} 90Sr source, single pe regime, detailed MC Scintillation Reemission 10^{-2} Calibrate method using well-understood LAB/PPO target DATA Preliminary

 10^{-3}

 10^{-1}

0

Time profile model: 3 exp. decay + rise time $\rho(t) \propto (1 - e^{-t/\tau_r}) \times \sum_{i}^{3} A_i e^{-t/\tau_i} \begin{cases} \tau_r = 0.7 \text{ ns} \\ \tau_1 = 4.3 \text{ ns} \\ \tau_2 = 16 \text{ ns} \\ \tau_3 = 166 \text{ ns} \end{cases}^{\text{H. M. O'Keeffe et al.}}_{\text{A640, 119 (2011)}}$

Good agreement between data and model "out of the box"

PRELIMINARY

20

40

Time (ns)

Preliminary light yield

Note: assumes LAB/PPO wvl emission profile

Fit for WbLS time profile

Method: define LAB/PPO LY Calibrate setup to LAB/PPO charge collection Determine LY of WbLS cocktail (data/MC fit)

Signal Separation in Theia

Signal Separation in Theia

Theia at NNN, G. D. Orebi Gann

Signal Separation in Theia

Ring Imaging

Ring Imaging

Theia at NNN, G. D. Orebi Gann

Ring Imaging

Talks by M. Askins, V. Fishcer, C. Mauger

Community Interest

Site	Scale	Target	Measurements	Timescale
UChicago	bench top		fast photodetectors	Exists
CHIPS	10 kton	H2O	electronics, readout, mechanical infrastructure	2019
EGADS	200 ton			Exists
ANNIE	30 ton	H2O+Gd	isotope loading, fast photodetectors	Exists
WATCHMAN	l kton			2020
NuDot	l ton	LS	directionality	2018
Penn	30 L	(Wb)LS	light yield, timing, loading	Exists
SNO+	780 ton			2018
CHESS (LBNL)	bench top	WbLS	signal separation, tracking, reconstruction / light yield, loading, attenuation	Exists
BNL	l ton			Exists

Theia at NNN, G. D. Orebi Gann

THEIA Collaboration

Summary

 THEIA: broad program of compelling science

• Flexibility to adapt to new directions in the scientific program as the field evolves

Powerful instrument of discovery

Rich, exciting program of ongoing R&D