

NNN 2018

International workshop on Next Generation Nucleon Decay and Neutrino Detectors

ANNIE:

The Accelerator Neutrino Neutron Interaction Experiment

Vincent Fischer

on behalf on the ANNIE collaboration

University of California at Davis

Overview of ANNIE

- ANNIE is the Accelerator Neutrino Neutron Interaction Experiment
- Gd-loaded water Cherenkov detector placed downstream of the Booster Neutrino Beam at Fermilab
- Aims at understanding final state neutron multiplicity from neutrino interactions in water as a function of muon kinematics
- Demonstration of new technologies in the fields of fast photosensors and detection media
- Finished taking background data (Phase I), soon to be taking physics data (Phase II funded and under construction)

Physics motivation: Kinematics-dependent neutron yield

Study the multiplicity of final state neutrons from neutrino-nucleus interactions in water

Long baseline oscillation physics

- The presence of extra final state neutrons is a possible measure of inelasticity in neutrino interactions
- Understanding this neutron yield is crucial to reduce bias in neutrino energy reconstruction
- Allows a possible statistical separation of neutrino/antineutrino

Neutron tagging

- Proton decay searches and Diffuse Supernova Neutrino Background detection rely on a good understanding of neutron yield in atmospheric neutrino interactions
- ANNIE will provide a high statistics measurement of this neutron yield in the energy range of interest

Technological motivation: Fast photosensors and novel detection media

LAPPD R&D and demonstration

- Large Area Picosecond PhotoDetectors (LAPPDs): 20x20 cm micro-channel plates with
 ~60-ps time resolution and <1 cm spatial resolution (see talk from Alexey Lyashenko)
- First use of this new technology in a running neutrino experiment
- Demonstrate LAPPDs are ready for research and deployment as photosensors for HEP

Novel detection media

- First application of Gd-loaded water on a neutrino beam
- Water-based Liquid Scintillator (WbLS)*:
 Mixture of water and liquid scintillator allowing emission of both Cherenkov and scintillation light

* see previous Theia talk and posters

ANNIE will allow the combined use of all the previous technologies in a single high-statistics experiment

The ANNIE detector

- Gadolinium-loaded water volume of 30 tons (0.1% by weight)
- Photosensors: ~130 PMTs (8, 10 and 11-inch, ~20% total photocoverage) and at least 5
 LAPPDs distributed in the tank
- Front veto: Scintillator paddles tagging charged particles originating from the rock upstream
- Muon Range Detector (MRD): Legacy from SciBooNE, steel-scintillator sandwich detector capable of muon direction and energy reconstruction
- \sim **10,000 CC** interactions per ton per year (2 × 10²⁰ POT) expected

How will ANNIE work?

- 1.a CC interaction in the fiducial volume
- 1.b Muon momentum and interaction vertex reconstructed using LAPPDs
- 1.c Muon momentum reconstructed with the MRD
- 2 Neutrons thermalize in the water volume
- 3-4 Neutron capture on gadolinium detected by the PMTs

Why does ANNIE need LAPPDs?

- Using a well-known neutrino beam as well as being able to reconstruct muon kinematics and understand interactions is crucial to the ANNIE physics goals
- LAPPDs drastically improve vertex, angular resolution, and momentum transfer resolution
 - Vertex resolution → Interaction point reconstruction and neutron containment
 - Muon kinematics → Better energy reconstruction
 - Precision timing → Multi-tracks separation

Measuring beam-induced neutron backgrounds with ANNIE Phase I

- ANNIE was designed to be a multi-phases experiment:
 - Phase I → Engineering run and background measurement
 - Phase II → First physics run
 - Phase III → Physics run and testbed for new technologies

Measuring beam-induced neutron backgrounds with ANNIE Phase I

- ANNIE was designed to be a multi-phases experiment:
 - Phase I → Engineering run and background measurement
 - Phase II → First physics run
 - Phase III → Physics run and testbed for new technologies
- Phase I → Measurement of beam-induced neutron backgrounds:
 - Skyshine neutrons → Neutrons from the beam dump entering the detector
 - Dirt neutrons → Neutrons originating from neutrino interactions downstream of the dump

- Background neutron rate per spill is less than 2%
- Neutron background is not an issue for the Phase II physics

Measuring beam-induced neutron backgrounds with ANNIE Phase I

- ANNIE was designed to be a multi phases experiment:
 - Phase I → Engineering run and background measurement → DONE!
 - Phase II → First physics run → UNDER CONSTRUCTION
 - Phase III → Physics run and testbed for new technologies

- Beam-induced neutron background isn't an issue for physics
- Phase I relied on the key physical infrastructures of Phase II
- → We gained critical operational experience that informed the design of our physics run

Towards Phase II - A fully operational detector

New fast electronics

LAPPDs and fast readouts

Fully funded and under construction at Fermilab!

Most PMTs onsite and ready to be tested/installed!

HV and electronics racks ready to be populated!

Muon Range Detector now fully refurbished!

Fully funded and under construction at Fermilab!

Stainless steel **inner structure** being **welded and mounted!**

Beneg ALD coater with load-lock

ANNIE and LAPPDs

- ANNIE has been an early LAPPD adopter since the beginning and maintains strong ties
 with the INCOM company, current manufacturer of LAPPDs (see Alexey Lyashenko's talk)
- LAPPDs now commercially available with several buyers already identified
- Two of the 5 first ANNIE LAPPDs have been received and are being throughly tested

Thermal evaporator

From A. Lyashenko in the Detector parallel session

١	PI & SPONSOR	PROGRAM TITLE
	Mayly Sanchez and Matthew Wetstein, Iowa State	ANNIE - Atmospheric Neutrino Neutron Interaction Experiment
	Erik Brubaker, Sandia National Lab/CA	Neutron Imaging Camera
	Graham Smith, Klaus Attenkofer (BNL)	Gamma & Neutron Detectors
	Henry Frisch (U of Chicago) , Dmitri Denisov (Fermilab)	Precision Time-of-Flight with Commercial Photodetectors at the Fermilab Testbeam Facility
	Matthew Malek,(u of Sheffield)	WATCHMAN, UK STFC
	Josh Klein, U of Penn	Spectrally Sorting of Photons, using Dichroic Films and Winston Cones, WATCHMAN, THEIA
	Gabrial D. Orebi Gann (UC Berkeley)	WATCHMAN, THEIA

More LAPPD tests ongoing

Waveforms and transit time spread

LAPPO25

Dedicated LAPPD test stand

LAPPD 31 (our second!) before and after opening

The physics goals of Phase II

- In addition to the primary physics goal:
 - Measurement of charged current cross section on oxygen
- As more and more data is being collected and the detector is being upgraded, a broader range of physics programs becomes available...
 - Measurement of charged current resonant pion production cross section
 - Measurement of neutral current cross section
- ... as well as a wide range of experimental techniques:
 - Detection of de-excitation gammas in water
 - Hybrid kinematic-calorimetric energy reconstruction (Phase III)
 - Cherenkov-Scintillation light separation using WbLS and fast photosensors (Phase III)

Phase II timeline

Pure water Spring 2019

→ Commissioning

- Gd-loaded water → Physics data taking
- *Spring 2019 Summer 2020* → Neutron yield measurement
 - → CC cross section measurement
 - \rightarrow CC0 π cross section measurement

Additional LAPPDs

Fall 2020

- → More detailed reconstruction of multi-track final states and pions
- → Possible NC cross section measurement

Phase III

~2021

→ Testbed for new technologies

LAPPDs and scintillation for the win!

Water-based Liquid Scintillator (WbLS): Mixture of water and liquid scintillator allowing emission of both Cherenkov and scintillation light

- Separating Cherenkov and scintillation allows a combined kinematic and calorimetric measurement
- Doing so in a detector such as ANNIE requires fast photosensors
- Scintillation light allow neutron capture point reconstruction and lowers the detection threshold for charged particles such as protons
- The combination of WbLS with fast photosensors is the main physics case for a possible ANNIE Phase III
- Crucial contribution to WATCHMAN and Theia

~150 sensors

ANNIE → **WATCHMAN** → **Theia**

2019+

2022+

202?

Data

taking

Conclusion and take-home message

- The goals of ANNIE:
 - Study the multiplicity of final state neutrons from neutrino-nucleus interactions in water
 - Perform a measurement of the charged current cross section on water as a function of muon kinematics
 - Demonstrate the combined use of new detection media and fast photosensors
- Phase I is a success and demonstrates Phase II is feasible with a low neutron background
 - → Neutron background measurement publication in progress
- ANNIE is moving into Phase II and will take physics data in 2019
- We are discussing adding WbLS and more fast photosensors for a possible Phase III

In the next several years, ANNIE will demonstrate and develop the key technologies for next generation water-based neutrino detectors and precision measurements

THANK YOU FOR YOUR ATTENTION!

BACK-UP

Water-based Liquid Scintillator

- Water-based Liquid Scintillator (WbLS) is a mixture of pure water and oil-based liquid scintillator
- While water and oil don't mix, WbLS is made using a surfactant (soap-like) such as PRS* (hydrophilic head and hydrophobic tail) to hold the scintillator molecules in water in a "micelle" structure
- Combines the advantages of water (low light attenuation, low cost) and liquid scintillator (high light yield)
- Emission of prompt Cherenkov light and delayed scintillation light
- Tunable LS content for a broad range of physics goals
- Low cost and environmentally-friendlier than pure LS
- Strong R&D effort ongoing at Brookhaven and Berkeley Nat. Labs and UC Davis

Micelle structure in water

Samples of WbLS with different LS concentrations

SciBooNE

- SciBar: Scintillator tracking detector (14'000 bars, 14 tons)
- Electron Catcher: 2 planes of calorimeter (lead and scintillating fibers)
- Muon Range Detector
- Measurement of CC-QE, CC- π^{\pm} , CC- π^{0} , NC-ES cross-sections

PSEC-4 electronics for LAPPDs

PSEC4 chips

- CMOS-based waveform sampling chip
- Up to 15 GSamples/s
- 1 mV noise
- 6 channels per chip
- Operated on a test beam, scalable to large systems
- ANNIE Central Cards to control ACDC cards (30 channels, 5 PSEC ASICs)
- Lots of work done and ongoing at U. Chicago (H. Frisch's group, http://psec.uchicago.edu/) and ISU (M. Wetstein's group)

Image source: Jonathan Eisch (ISU)

ANNIE Central Card

Phase II simulations – Understanding ANNIE

Preliminary neutron detection efficiencies

Neutrons as an indicator of inelasticity

- Pure CCQE interactions should not produce neutrons but inelastic CC interactions do
- The presence of final state neutrons in a CC interaction likely means something inelastic happened
- Neutron-generating processes: Stuck (absorbed) pions, 2p-2h, etc...
 - → Final state neutrons are a sign of inelasticity and ANNIE will be sensitive to these neutrons

Neutron production and 0n ↔ Xn confusion

Physics motivation: Energy-dependent neutron yield

Study the multiplicity of final state neutrons from neutrino-nucleus interactions in water

Proton decay searches

- No neutrons produced in 90% of proton decays (p → e⁺ + π⁰)
- Main background → Atmospheric neutrinos likely to produce neutrons
- Data in needed to implement this neutron yield and improve simulations and signal to background separation

Physics motivation: Energy-dependent neutron yield

Study the multiplicity of final state neutrons from neutrino-nucleus interactions in water

Proton decay searches

- No neutrons produced in 90% of proton decays (p → e⁺ + π⁰)
- Main background → Atmospheric neutrinos likely to produce neutrons
- Data in needed to implement this neutron yield and improve simulations and signal to background separation

Supernova neutrino detection

- Diffuse Supernova Background (DSNB): Continuous flux of neutrinos from past supernovae
- Main detection channel for \overline{v}_e : $\overline{v}_e + p \rightarrow e^+ + n$ (Inverse Beta Decay)
- Main background: Decay of sub-Cherenkov muons produced by atmospheric neutrinos + neutron
- Understanding those atmospheric neutrino interactions is needed

The Booster Neutrino beam

- 8 GeV protons from the Booster beam hitting a beryllium target with reversible horn polarity
- Repetition rate of ~5 Hz, 5×10^{12} protons-on-target per 1.6 µs spill on average
- Mean neutrino energy of 700 MeV
- Composition in neutrino mode: 93 % of v_{μ} , 6.4 % of \overline{v}_{μ} and 0.6 % of v_{e} and \overline{v}_{e}
- 100 meters upstream from ANNIE
- Provides about one v_{μ} charged current interaction in the ANNIE water volume every 150 spills
- Energy range of interest for most long baseline oscillation experiments

Super Kamiokande neutron yield

- Super Kamiokande measured the neutron yield as a function of the visible neutrino energy using atmospheric neutrinos
- However:
 - Low neutron detection efficiency of 17% (before SK-Gd)
 - Only visible energy → Unknown neutrino energy and angle
 - Unknown neutrino flavor and unknown interaction type

