SUMMARY OF THE ANALYSIS AND SYSTEMATICS SESSION

D. Harris, M. Hartz, K. Terao, R. Wendell

NNN 2018, Vancouver, Nov. 3

WHY A SYSTEMATIC UNCERTAINTIES AND ANALYSIS SESSION?

- ➤ Current and next generation neutrino and nucleon decay experiments present challenges for analysis of data
- ➤ Increased statistics are moving experiments into systematics dominated regimes
 - ➤ Need systematic error reduction
- ➤ New detection technologies can increase the information in events
 - ➤ Can we take full advantage of information for event reconstruction and event classification in an unbiased manner?

AGENDA

Thursday:

14:00	Deep Learning Techniques Overview	KAZUHIRO, Terao
14:30	Machine Learning Techniques on NOvA	GROH, Micah
14:50	Machine Learning at MINERvA	GHOSH, Anushree
15:10	Machine Learning in MicroBooNE	WONGJIRAD, Taritree
15:30	Coffee Break	
15:55	Systematics, calibration and analysis techniques in JUNO	TANG, Jian
16:20	Systematic errors in Borexino Solar and Geoneutrino Analyses	LUDHOVA, Livia Ludhova
16:45	Systematic Uncertainties for Atmospheric Neutrino Measurements	YAÑEZ, Juan Pablo
17:10	Test Beam Experiments for the Future Generation of LBL Experiments	BORDONI, Stefania

Friday:

14:00	Neutrino Interaction Uncertainties in Long Baseline Oscillation Experiments	MARSHALL, Chris
14:30	DUNE Analysis Methods and Systematic Uncertainties	BACKHOUSE, Christopher
14:55	Systematics in Hyper-Kamiokande experiment	YOSHIDA, Tomoyo
15:20	Analysis and Systematic Uncertainty Experience from MicroBooNE	PORZIO, Salvatore Davide
15:45	Coffee Break	
16:10	Uncertainties from Neutrino Interactions at T2K	MCFARLAND, Kevin
16:35	Details of Systematic Uncertainties at NOvA	SUTER, Louise
17:00	Interaction Modeling Uncertainties at MINERvA	MCFARLAND, Kevin

DEEP NEURAL NETWORKS (K. TERAO)

► How to identify a cat with a convolutional neural net (CNN)

- ➤ Down-sampling and filtering of images to make 1-D array of discriminants that can be input to a deep neural net
- ➤ Images can be views of events from detectors

UP-SAMPLING (K. TERAO)

Up-sampling of the feature map to classify pixels in the image

Apply to neutrino events to cluster charge and classify as particle types

BUILDING A COMMUNITY

DeepLearnPhysics (deeplearnphysics.org)

- Collaboration for ML technique R&D
 - ~70 members including HEP exp/theory, nuclear physics, BES (LCLS, SSRL), Cryo-EM, accelerator, AI/CS community
- Open source software/tools, containers, open data
 - our framework to collaborate & share reproducible results
- Community building
 - Workshops (done at many universities/national labs)
 - Sharing opportunities (talks, jobs/fundings, etc.)

Collaborations beyond HEP

Public challenge (collab. w/ LHC)

DEEP LEARNING AT NOVA (M. GROH)

- ➤ NOvA applies CNN that improved their yield by 30%
- ➤ Use two views of event for classification
- ➤ New applications of deep learning include:

Cluster and classify objects simultaneously

Photon 0.969 Photon 0.968 Proton 0.968 Muon 0.992 Muon 0.992 Electron 0.572

Use linear output of NN as energy estimator

DEEP LEARNING AT MINERVA (A. GHOSH)

- Using a CNN to find vertices for events
 - ➤ Three towers for each view
- ➤ Factor of 2-3 improvement in the purity compared to track-based reconstruction

MACHINE LEARNING AT MICROBOONE (T. WONGJIRAD)

➤ Initial work with single particle classifier

e- classification performance

γ classification performance

➤ CNNs applied in low energy nue analysis for track/shower pixel labeling and particle ID

	ICPF	ICPF		
Sample	mean	90%	Shower	Track
Test	1.9	4.6	4.1	2.6
ν_e	6.0	13.8	7.6	13.8
ν_{μ}	3.9	4.5	14.2	4.3
1elp	2.2	5.7	2.8	4.0
$1\mu1p-LE$	2.3	2.2	6.2	2.4
1e1p-LE	3.9	11.5	3.8	8.0

➤ Incorrect pixel fraction is at the few percent level

MicroBooNE: arxiv:1808.07629

HOW TO AVOID BIAS WHEN USING CNNS?

➤ All experiments ask the question: "How to avoid training on features of MC that aren't in the data?"

NOvA removes muon from data and adds simulated electron

See consistent efficiency in data and MC

	Pre Selection	Full Selection	Efficiency
Data Events	486083	316009	0.6501
MC Events	511287	341119	0.6672

DOMAIN ADVERSARIAL NEUTRAL NETWORK

- Being applied by MINERvA to avoid selection on features that are in MC (training sample),
 but not data
- ➤ Label classifier: does the classification you are interested in
- Domain classifier: train to be indiscriminate between domains (data and training sample)

TRAINING WITH UNBIASED KINEMATICS

- MicroBooNE trains "particle-bomb" MC generated with
 - Uniform distribution of number of particles
 - ➤ Uniform distribution of momenta
 - ➤ Isotropic direction of particles
- ➤ Can't train on kinematics and correlations from neutrino interaction model

SYSTEMATIC UNCERTAINTIES

NEUTRINO INTERACTION UNCERTAINTIES (C. MARSHALL)

➤ Review of where systematic errors enter when extrapolating from near detectors

$$N_{\nu_e}^{far}(E_{reco}) = \int \Phi_{\nu_e}(E_{\nu}, L) \times \sigma_{\nu_e}(E_{\nu}) \times \epsilon^{far}(E_{\nu}) \times \mathbf{D}_{\nu_e}^{far}(E_{\nu} \to E_{reco}) dE_{\nu}$$
$$N_{\nu_{\mu}}^{near}(E_{reco}) = \int \Phi_{\nu_{\mu}}(E_{\nu}, 0) \times \sigma_{\nu_{\mu}}(E_{\nu}) \times \epsilon^{near}(E_{\nu}) \times \mathbf{D}_{\nu_{\mu}}^{near}(E_{\nu} \to E_{reco}) dE_{\nu}$$

- > Systematic uncertainties on energy reconstruction are important
 - ➤ Non-quasielastic contributions for kinematic reconstruction
 - ➤ Dependence on final state for calorimetric reconstruction

DUNE SYSTEMATICS (C. BACKHOUSE)

➤ DUNE is developing a comprehensive systematic error model

Flux Error Matrix

Detector Model

Actively pursuing

- ▶ E-field distortions
- Alignment

Others

- Calibrations absolute scale, channel-to-channel variations
- Dead channels
- ► Neutron-Ar cross-section

▶ ...

Cross Section Systematics

GENIE dials (v2.12.10c)

- ► Default priors where they don't double count
- ▶ Plus...

QE-like

- ▶ Z-expansion axial FF
- MINERvA's 2p2h enhancement (low recoil data)¹
- ▶ 2p2h energy dependence MINERvA/DUNE energies not equal

Low-W

- ► Swap MK model for Rein-Sehgal interference of RES+non-RES
- ► Empirical fit to low Q² suppression for RES needed by NuMI expts

High-W

 Uncorrelated normalization uncertainties for non-resonant pion production for 1,2,3+ pions, up to W=5 GeV

FSI-like

▶ Inflation of smearing of E_{avail} reflecting C→Ar

Other

- ▶ Potential $\nu_e/\bar{\nu}_e$ xsec differences
- $\blacktriangleright \nu_{\mu}/\nu_{e}$ differences from lepton mass differences²
- Combination of smaller effects can be treated with PCA
- Ideally also swap in entirely different models

DUNE SYSTEMATIC ERROR MITIGATION

- ➤ Near detector suite with option to vary off-axis angle
- ➤ Liquid argon TPC and gas argon TPC in magnetic field

HYPER-K SYSTEMATICS (T. YOSHIDA)

➤ Hyper-K has T2K systematic error estimates as a starting point

		Flux & ND- constrained cross section	ND- independent cross section	Far detector	Hadronic re- interaction	Total
v-mode	Appearance	3.2%	7.8%	2.9%	3.0%	8.8%
	Disappearance	3.3%	2.4%	2.4%	2.2%	5.1%
$\overline{\nu}$ -mode	Appearance	2.9%	4.8%	3.8%	2.3%	7.1%
	Disappearance	2.7%	1.7%	2.0%	2.0%	4.3%

 \triangleright Goal is to reduce total systematic error to \sim 3% or better

Systematics errors assumed in Design Report

		Flux & ND-constrained	ND-independent	For detector	Total
		cross section	cross section	Far detector	Total
mada	Appearance	3.0%	0.5%	0.7%	3.2%
ν mode	Disappearance	3.3%	0.9%	1.0%	3.6%
= 1-	Appearance	3.2%	1.5%	1.5%	3.9%
$\overline{\nu}$ mode	Disappearance	3.3%	0.9%	1.1%	3.6%

SYSTEMATIC ERROR MITIGATION IN HYPER-K

New hadron production measurements for interaction outside target

Upgrades to ND280 detector. Additional upgrades after T2K may be necessary.

Off-axis spanning intermediate water Cherenkov detector

Energy reconstruction constraint like Dune-PRISM

Electron neutrino cross section and background measurements

MICROBOONE ANALYSIS EXPERIENCE (S. D. PORZIO)

 Detailed description of electron and light propagation modeling, calibration and systematic errors

Current implementation:

Using alternative model externally constrained with other argon detectors measurements

Future implementation:

Internal constraints from ongoing MicroBooNE calibration measurements

Current implementation:

Infinite lifetime for default "Extreme case" simulation (IO ms) for uncertainty

Future implementation:

Ongoing MicroBooNE calibration measurements to disentangle it from other effects.

Current implementation: lo

- · External constraints on argon for L
- T less studied in literature, using external measurements and theoretical extrapolation to MicroBooNE field strength

Possible future implementation:

- Internal constraints from ongoing MicroBooNE calibration measurements
- 39Ar to disentangle L/T components

Systematic errors on detector response are still dominant, but many approaches to reduce systematic error are being pursued

	$oldsymbol{ u}_{\mu}$ CC incl.	$oldsymbol{ u}_{oldsymbol{\mu}}$ CC $oldsymbol{\pi}^{\scriptscriptstyle 0}$
Total systematic uncertainty	25%	31%
Detector response uncertainty	19%	21%
Dynamic induced charge uncertainty	15%	≈15%

MICROBOONE FLUX UNCERTAINTY?

Large uncertainty on the low energy flux prediction

Are new hadron production measurements needed?

NEUTRINO INTERACTION UNCERTAINTIES AT T2K (K. MCFARLAND)

➤ Comprehensive description of T2K's neutrino interaction model

Uncertainties in the quasielastic-like channels:

Uncertainty on low Q² suppression from long-range correlations

Implementation of Nieves et. al. 2p-2h Allow total cross section to vary Allow relative fraction of Δ -like and non- Δ -like to vary

CONSTRAINTS BY T2K NEAR DETECTOR

- ➤ 2p-2h for neutrinos is enhanced
- Δ-like contribution to 2p-2h is maximized

- Significant pull on axial mass for pion production mode
- Pointing to not-modeled nuclear effects that effect?

CROSS SECTION MEASUREMENTS AT T2K

- ➤ Reconstruct muon and proton candidates to construct variables in the transverse plane
- ➤ Have shown capability to discriminate between models
- Improvement with more stats. Can ND280 upgrade improve with lower thresholds and improved resolution?

SYSTEMATICS UNCERTAINTIES AT NOVA (L. SUTER)

- ➤ Apply RPA with uncertainties
- ➤ Vary axial mass by $\pm 5\%$
- ➤ Include RPA-like effect for resonant events
- ➤ Tuning of non-resonant single pion and DIS processes with associated uncertainties
- ➤ After Genie tuning, still discrepancy in hadronic energy distribution
- ➤ Empirical MEC (2p-2h) model is added to achieve agreement with data
- ➤ Systematic error shifts enhancement between QE and resonant region
- ➤ Vary the fraction of np and nn(pp) pairs in initial state

NOVA DETECTOR CALIBRATION

Detector Calibration is also a dominant source of systematic error

Energy scale: Stopping muons provide standard candle for setting absolute energy scale

- Uncertainty estimated from maximum difference between the multiple probes, Michele e- spectrum, π⁰ mass, dE/dx of μ, p.
 - Most discrepant is the dE/dx of proton. This discrepancy is interpreted as a 5% absolute calibration uncertainty.
- Produce samples with energy shifted 5% lower and 5% higher. Applied as both correlated and uncorrelated between detectors

Attenuation: Using through going muons (cosmic or v induced). Include WSF attenuation uncertainty to cover to differences seen in data and MC attention fits

NEUTRON UNCERTAINTY AT NOVA

NOvA observes discrepancy in neutron energy distribution Scale low energy neutrons to cover the discrepancy

Many questions about this neutron energy distribution Community is interested in neutron reconstruction

TUNING INTERACTIONS AT MINERVA (K. MCFARLAND)

- ➤ W shift in single pion production
 - ➤ Fixed by correct treatment of interference terms or in-medium effects?
- ➤ Low Q² suppression appears in single pion (neutral) channels
 - ➤ Not-modeled nuclear effects?

$$Q^2 = 2E_{\nu}(E_{\mu} - p_{\mu}\cos\theta_{\mu\nu}) - m_{\mu}^2$$
 (GeV²/c²)

2P-2H (?) ENHANCEMENT IN MINERVA DATA

- ➤ MINERvA observes excess where 2p-2h events typically reside in energy transfer
 - ➤ Larger than model of Nieves et. al.
- ➤ Empirical model can explain antineutrino data at MINERvA

COMPATIBLE WITH T2K AND NOVA

- ➤ Recall that T2K and NOvA both require enhancements of the 2p-2h to describe their near detector data
- ➤ Study applying MINERvA empirical model to T2K data (only constant energy term of cross section)

Apply to T2K C term for CC0 π

Works well in some bins, no so well in others

SYSTEMATIC UNCERTAINTIES IN JUNO (J. TANG)

- ➤ Energy scale calibration at <1% is needed
- ➤ Daya Bay has achieved 0.5% through meticulous calibration
- ➤ R&D on multiple approaches to move deploy calibration sources in the detector volume
- Work to understand gamma and electron energy responses

REACTOR NEUTRINO SPECTRUM

- The reactor flux can have structure
- ➤ If not measured and modeled, can effect mass hierarchy measurement

Relative difference of 3 synthetic spectra to spectrum predicted from ILL data (Huber+Mueller model)

Near detector to measure the flux:

- JUNO Taishan Antineutrino Observatory (JUNO-TAO) acts as a near detector.
- Started R&D
 - 2.9 ton Gd-LS in spherical vessel
 - Outer buffer oil in stainless steel vessel
 - → Central detector size ~ 2 m x 2 m x 2 m
 - → @35 m to reactor (4.6GW): 10x JUNO statistics (6yr) after 1 year

BOREXINO SYSTEMATIC ERRORS & ANALYSIS (L. LUDHOVA)

➤ Calibration includes radioactive sources (internal and external), laser calibration

BOREXINO CALIBRATION

JINST 7 (2012) P10018

Inner Vessel

Mitglied der Helmholtz-Gemeinschaft

Source	Туре	E [MeV]	Position	Motivations
⁵⁷ Co	γ	0.122	in IV volume	Energy scale
¹³⁹ Ce	γ	0.165	in IV volume	Energy scale
²⁰³ Hg	γ	0.279	in IV volume	Energy scale
⁸⁵ Sr	γ	0.514	z-axis + sphere R=3 m	Energy scale + FV
⁵⁴ Mn	γ	0.834	along z-axis	Energy scale
⁶⁵ Zn	γ	1.115	along z-axis	Energy scale
⁶⁰ Co	γ	1.173, 1.332	along z-axis	Energy scale
⁴⁰ K	γ	1.460	along z-axis	Energy scale
²²² Rn+ ¹⁴ C	β,γ	0-3.20	in IV volume	FV+uniformity
	α	5.5, 6.0, 7.4	in IV volume	FV+uniformity
²⁴¹ Am ⁹ Be	n	0-9	sphere R=4 m	Energy scale + FV

External calibration

9 positions with ²²⁸Th source (γ 2.615 MeV)

Laser calibration

- PMT time equalisation
- PMT charge calibration (charge calib. also using ¹⁴C)

DETECTING CNO?

Borexino aims to detect CNO neutrinos

Tag cosmogenic ¹¹C

Constrain ²¹⁰Bi background

UNCERTAINTIES IN ATMOSPHERIC NEUTRINOS (J. P. YANEZ)

- > Review of systematic errors for atmospheric neutrino oscillation measurements
- ➤ Experiments generally don't give the relevance of systematic errors
- > Sometimes give the pulls on systematic parameters from fits

IceCube DeepCore Oscillations

Panamatana	Priors	Best Fit				
Parameters	Priors	NO	IO			
Flux and cross section p	arameters					
Neutrino event rate [% of nominal]	no prior	85	85			
$\Delta \gamma$ (spectral index)	0.00 ± 0.10	-0.02	-0.02			
M_A (resonance) [GeV]	1.12 ± 0.22	0.92	0.93			
$\nu_e + \bar{\nu}_e$ relative normalization [%]	100 ± 20	125	125			
NC relative normalization [%]	100 ± 20	106	106			
Hadronic flux, energy dependent $[\sigma]$	0.00 ± 1.00	-0.56	-0.59			
Hadronic flux, zenith dependent $[\sigma]$	0.00 ± 1.00	-0.55	-0.57			
Detector paramet	ers					
overall optical eff. [%]	100±10	102	102			
relative optical eff., lateral $[\sigma]$	$0.0 {\pm} 1.0$	0.2	0.2			
relative optical eff., head-on [a.u.]	no prior	-0.72	-0.66			
Background						
Atm. μ contamination [% of sample]	no prior	5.5	5.6			

Flux and cross section parameters pulled significantly in the fit, indicating these are dominant systematic effects

Better reporting of systematic errors in the future?

IMPROVING FLUX CALCULATIONS

- MCEq numerical calculation tool
- ➤ New hadron production data
- Using fits measurements of primary fluxes

-solving transport equations numerically

HEAO ★ PAMELA ■ AMS-02 • CREAM ARGO-YBJ

TUNKA
□ IceCube

KG
▼ TA

Auger

 10^{10}

 10^{9}

 10^{8}

 10^{7}

E/GeV

TEST EXPERIMENTS (S. BORDONI)

➤ Test beam experiments will be necessary to understand detector responses and model them with 1% level accuracy

Proto-DUNE at CERN NP

LArIAT at Fermilab MCenter

HPTC at CERN T10

TEST EXPERIMENTS (S. BORDONI)

➤ Test beam experiments will be necessary to understand detector responses and model them with 1% level accuracy

LArIAT at Fermilab MCenter Proto-DUNE at CERN NP (π·Ar) Total Hadronic XS 21/09/2018: First track seen at nominal E Field! Cathod **On-line Event Display** and a cold ---alpha source for calibration 2500 3000 2000 1500 HPTC at CERN T10 2500 1000 500 1000

36

GETTING LOWER ENERGY BEAMS

➤ The HPTPC uses an off-axis beam to get lower energy particles

➤ Is there need for a low energy beam line at CERN after the shutdown

SOME FINAL THOUGHTS

- ➤ Multiple experiments using machine learning techniques
 - Methods to avoid bias are being developed and applied
 - ➤ Are machine learning techniques applicable to WC and LS detectors?
- ➤ Control of systematic errors in neutrino interaction modeling critical for next generation oscillation experiments
 - ➤ We can't solely rely on models and trust that model development will be sufficient to control systematic errors
 - ➤ MINERvA, NOvA and T2K show enhancements of 2p-2h no major model developments based on this data yet?
 - ➤ PRISM approaches adopted by Hyper-K and DUNE to over-constrain models
 - ➤ Interest in neutron detection let's have more talks at next NNN
- ➤ Detector calibration is critical for all experiments
 - ➤ How are DUNE and Hyper-K planning to meeting their goals more details at next NNN?

THANK YOU

MACHINE LEARNING AT DUNE (C. BACKHOUSE)

- ➤ CNN applied to event classification
- ➤ Can achieve signal efficiency similar to the fast MC from the CDR
- ➤ Also using CNN to classify and cluster hit-by-hit information input to traditional reconstruction