

#### The Astroparticle and Exotic Physics program of MicroBooNE

José I. Crespo-Anadón Columbia University Nevis Laboratories for the MicroBooNE Collaboration

11/02/2018 19th International Workshop on Next generation Nucleon Decay and Neutrino Detectors (NNN18)







- Booster neutrino beam from pion decay-in-flight mostly (plus kaon and muon decays).
  - Single horn for focusing charged mesons.
  - Well-known beam, same as MiniBooNE (PRD 79, 072002).
  - Also, NuMI beam off-axis.
- 3 Liquid Argon Time Projection Chamber (LArTPC) detectors.
  - Same detector technology and target to reduce systematic uncertainties.

José I. Crespo-Anadón (Columbia)

#### MicroBooNE Physics Goals

- **1)** Investigate the excess of electron-like events observed in MiniBooNE.
- 2) Perform high-precision measurements of cross-sections of  $v_{\mu}$  and  $v_{e}$  on Ar.
- **3)** Develop further the LArTPC detector technology.
- 4) Perform searches for astroparticles and exotic physics exploiting the LArTPC capabilities





JINST 12 P02017 (2017)



#### MicroBooNE TPC

- 170 tonnes of liquid argon (90 tonnes active).
- Cathode at -70 kV. E<sub>drift</sub> ~ 273 V/cm.
- Maximum drift length: 2.5 m. Drift time: 2.3 ms.
- Three wire planes to reconstruct 3D interaction. 3 mm wire pitch. 8256 channels.
- Two induction planes with 2400 wires each at ± 60° from vertical. One collection plane with 3456 vertical wires.
- Cold front-end electronics.
- 2 MHz digitization with warm electronics.



José I. Crespo-Anadón (Columbia)



#### MicroBooNE PMT & trigger systems



**32** 8" Hamamatsu R5912 Cryogenic **PMTs** mounted behind the wire planes with TPB-coated acrylic plates.

Custom (64 MHz) readout electronics.

- Level-1 trigger using accelerator gates (BNB and NuMI) and external triggers (for cosmics).
- Level-2 trigger in software using PMT information in the beam window.

José I. Crespo-Anadón (Columbia)

#### Exotic physics with beam neutrinos: Heavy Sterile Neutrinos @ MicroBooNE

#### Heavy Sterile Neutrinos (HSN)



- HSN produced in BNB/NuMI secondary meson decays through mixing with Standard Model neutrinos.
  - Mixing matrix elements:  $U_{e4}$ ,  $U_{\mu4}$ .
- Mass between ~ 1 493 MeV

(K threshold).

- No oscillation due to large mass loss of coherence.
- Large mass: no helicity suppression.
- HSN decays in flight. Look for HSN decays within the detector.



- HSN travel slower than SM neutrinos.
- Opportunity: extend trigger window to capture HSN delayed events.
  - BNB trigger window extended by 33% (extra 624 ns).
  - After end-of-spill: (background) SM neutrino-free window.
- HSN trigger commissioned in June 2017.

José I. Crespo-Anadón (Columbia)

#### HSN decay channels

- CC + NC: N  $\rightarrow$  3v,  $\nu\pi^{0}$ , e-e+ $\nu$ ,  $\mu$ - $\mu$ + $\nu$
- CC: N  $\rightarrow$  yv, µev, en, µt



- Focus first on  $U_{\mu4}$ -mediated  $N \rightarrow \mu \pi$  in delayed BNB window
- On-site background measurement using an off-time trigger with same thresholds as the HSN trigger.

For on-time searches:

- HSN decays within the LArTPC: clean vertex.
- Relatively forward-going.
- Reconstruct invariant mass.





José I. Crespo-Anadón (Columbia)

#### Prospects

- MicroBooNE paving the way for the SBN measurement.
  - Analysis using only delayed-window events (~ 2E20 POT) in progress.
    - Focus on N  $\rightarrow \mu \pi$  channel.
    - Mass range 246 388 MeV.
  - First search in a LArTPC.
  - Exploring the possibility to use the NuMI beam too (off-axis).
- SBN expectations:



José I. Crespo-Anadón (Columbia)

#### Astroparticles: Supernova Neutrinos @ MicroBooNE

José I. Crespo-Anadón (Columbia)

#### Supernova neutrinos

- Neutrinos emitted by a core-collapse SN.
  - Short burst: ~ 10 s.
  - Low energy: tens of MeV.
- Expectation at MicroBooNE:
  - ~ O(10) events for a SN at 10 kpc.
  - CC:  $v_e$  + <sup>40</sup>Ar  $\rightarrow$  e<sup>-</sup> + <sup>40</sup>K\* (E<sub>th</sub> ~ 5 MeV) Unique sensitivity to  $v_e$  flux.

Complementary to  $\overline{v}_{e}$  sensitivity of water Cherenkov and liquid scintillator detectors.

- Surface detector. Cannot self-trigger.

Instead, read out data continuously and rely on a delayed external trigger from Supernova Early Warning System (Super-K + LVD + IceCube + KamLAND + Borexino + Daya Bay + HALO).

- Continuous readout of the detector also enables:
  - R+D for beyond-Standard Model physics at DUNE (p decay, n-nbar oscillation...)
    - Study backgrounds, prototype analyses...
  - Continuous monitoring of the detector for diagnosing.

José I. Crespo-Anadón (Columbia)





#### Trigger + "supernova" readout streams



### Zero suppression (TPC)

- Data stored temporarily on a 13 TB disk at each DAQ server, awaiting an SNEWS alert to be transferred to permanent storage.
- The **bottleneck** of the stream is the **disk writing speed** at the DAQ servers (assumed conservatively to be 50 MB/s).
- Neglecting header sizes:





→ Distributed between 9 servers: ~ 3.7 GB/s/server

(cf. One DUNE module – 384000 channels – 1.15 TB/s).

Need a compression factor ~ 80.

- Lossless compression (Huffman) gives factor ~ 5: not enough.
- Requires lossy compression.
- Writing at 50 MB/s gives us a window of > 48 h before data is deleted.

### Zero suppression (TPC)

## • Implemented in the Front End Module FPGA.

- Only the waveform passing a certain amplitude threshold (configurable) with respect to the channel baseline is saved, plus presamples and postsamples (configurable).
- The baseline can be dynamically computed using preceding samples or use a static value loaded at the beginning of the run (both have been commissioned and tested).

#### DATA from Nevis test stand





# Data rates after compression

First SN Run used **common thresholds** for all channels within one TPC plane.

Noisy channels affected dynamic baseline estimation, producing large variations.

Second SN Run used individualized (lower) channel threshold  $\rightarrow$  Increased sensitivity to low-energy physics.

Still noisy channels affected dynamic baseline calculation.

Third SN Run uses **individualized** (lower) channel threshold and static baselines.

Rates stable at ~ 50 MB/s. Target compression factor achieved!

ptic Physics program of MicroBooNE

#### Comparison: trigger readout

No lossy compression



#### MicroBooNE's first cosmic event

José I. Crespo-Anadón (Columbia)

#### Comparison: continuous readout

SN Run II Channel thresholds Dynamic baselines

5 fps gif  $\rightarrow$  125 times slower than actual readout



Frame N

Τ

1/2 Frame N +

#### SN-like physics with continuous stream



- Tuning of the zero-suppression is critical: reject the noise but keep the physics!
- Goal: set threshold as low as possible to detect the low energy e- and the de-excitation y from 40K\*.
- Michel electrons are a nice sample to use: similar energies.

#### SN-like physics with continuous stream



José I. Crespo-Anadón (Columbia)

#### Conclusion

- MicroBooNE has potential for a broad exotics program.
- MicroBooNE is spearheading a search for heavy sterile neutrinos in the BNB.
  - Dedicated trigger exploiting delayed signature.
  - Focus on  $\mathbb{N} \rightarrow \mu \pi$  channel. Publication in 2019.
- Commissioned a continuous readout stream for detection of supernova neutrinos.
  - First Michel electrons observed in three planes → Demonstration of low-energy (SN-like) capabilities.
  - Publication in preparation.
  - Zero-suppressed TPC waveforms can be used to develop TPC-trigger algorithms of interest for DUNE.

# Thank you for your attention!



#### **MicroBooNE Collaboration**

| University of Bern, Switzerland: Y. Chen, A. Ereditato, D. Goeldi, I. Kreslo, D. Lorca, M. Lüethi, T. Mettler, J.                | J. Sinclair, M. Weber                 |
|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Brookhaven: M. Bishai, H. Chen, W. Gu, X. Ji, J. Joshi, B. Kirby, Y. Li, X. Qian, B. Viren, H. Wei                               | , C. Zhang                            |
| University of Cambridge: J. Anthony, L. Escudero Sanchez, J. Jan de Vries, A. Smith                                              |                                       |
| University of Chicago: A. Mastbaum, K. Miller, D.W. Schmitz                                                                      |                                       |
| University of Cincinnati: R.A. Johnson                                                                                           |                                       |
| Colorado State University: I. Caro Terrazas, R. LaZur, M. Mooney, H. Rogers                                                      |                                       |
| Columbia University: D. Cianci, J. Crespo, V. Genty, YJ. Jwa, G. Karagiorgi, M. Ross-Lonergan, W. Seligman,                      | M. Shaevitz, K. Sutton                |
| Davidson College: B. Eberly                                                                                                      |                                       |
| Fermilab: B. Baller, S. Berkman, D. Caratelli, R. Castillo Fernandez, F. Cavanna, G. Cerati, K. Duffy, S. Gardiner, E. Gramellin | i, H. Greenlee, C. James, W. Ketchum, |
| M. Kirby, T. Kobilarcik, S. Lockwitz, A. Marchionni, S. Marcocci, O. Palamara, Z. Pavlovic, J.L. Raaf, A. Schukraf               | t, E. Snider, P. Spentzouris,         |
| M. Stancari, J. St. John, T. Strauss, M. Toups, S. Wolbers, M. Wospakrik, W. Wu, T. Yang, G.P. Zeller                            | *, J, Zennamo                         |
| Harvard University: N. Foppiani, R. Guenette, J. Martin-Albo, S. Prince                                                          |                                       |
| Illinois Institute of Technology: R. An, I. Lepetic, B. Littlejohn, D. Martinez                                                  |                                       |
| Kansas State University: M. Alrashed, T. Bolton, G. Horton-Smith, K. Neely, V. Meddage. A. I                                     | Paudel                                |
| Lancaster University: A. Blake, D. Devitt, A. Lister, J. Nowak                                                                   |                                       |
| Los Alamos: G. Garvey, E-C. Huang, W.C. Louis, T. Thornton, R. Van de Water                                                      |                                       |
| University of Manchester: J. Evans, A. Furmanski, D. Gamez, O. Goodwin, P. Guzowski, C. Hill, K. Mistry, R. Murrells, D. Po      | rzio, S. Söldner-Rembold, A.M. Szelc  |
| MIT: A. Ashkenazi, J.M. Conrad, O. Hen, A. Hourlier, J. Moon, A. Papadopoulou, L. Yate                                           | \$                                    |
| University of Michigan, Ann Arbor: C. Barnes, R. Fitzpatrick, J. Mousseau, J. Spitz                                              |                                       |
| New Mexico State University: V. Papavassiliou, S.F. Pate, L. Ren, S. Sword-Fehlberg, K. Woo                                      | druff                                 |
| Otterbein University: N. Tagg                                                                                                    |                                       |
| University of Oxford: G. Barr, M. Del Tutto, R. Soleti, W. Van De Pontseele                                                      |                                       |
| University of Pittsburgh: S. Dytman, L. Jiang, D. Naples, V. Paolone, A. Wickremasinghe                                          | •                                     |
| Pacific Northwest National Laboratory: E. Church                                                                                 |                                       |
| Saint Mary's University of Minnesota: P. Nienaber                                                                                |                                       |
| SLAC: M. Convery, L. Domine, R. Itay, L. Rochester, K. Terao, Y-T. Tsai, T. Usher                                                |                                       |
| South Dakota School of Mines & Technology: D. Martinez                                                                           |                                       |
| Syracuse University: A. Bhat, P. Hamilton, G. Pulliam, M. Soderberg                                                              | 174 collaborators                     |
| Tel Aviv University: E. Cohen, E. Piasetzky                                                                                      | 24 institutions (7 non $11C$ )        |
| University of Tennessee, Knoxville: S. Gollapinni, A. Mogan, W. Tang, G. Yarbrough                                               | 34 Institutions (7 non-0.5.)          |
| University of Texas at Arlington: J. Asaadi, Z. Williams                                                                         | 44 postdocs                           |
| Tubitak Space Technologies Research Institute, Turkey: F. Bay                                                                    |                                       |
| Tufts University: K. Mason, J. Mills, R. Sharankova, T. Wongjirad                                                                | oz grad students                      |
| Virginia Tech: L. Gu, C. Mariani, M. Murphy, V. Pandey                                                                           |                                       |
| University of Warwick: J. Marshall                                                                                               |                                       |

Yale University: S. Balasubramanian, L. Cooper-Troendle, B.T. Fleming\*, D. Franco, J. Jo, . Luo, B. Russell, G. Scanavini, S. Tufanli

#### Backup

#### SN-like physics with continuous stream



Run 17990 event 170834 Michel 0

Michel e candidate from trigger stream



Run 19021 event 711468 Michel 0



#### MicroBooNE & SBND Very similar designs.

**MicroBooNE**: analog data sent to ADC attached to back-end electronics.

**SBND**: digital data sent through optical link to back-end electronics.

#### Front End Module (FEM).

64 ch/board (typically 32 induction ch + 32 collection ch). Up to 16 boards per crate.

- Data processing by FPGA (Altera Stratix III).
- 1 M × 36 bit 128 MHz SRAM

as ring buffer. 8 frames in buffer (1.6 ms/frame  $\times$  8 frames = 12.8 ms).

- 64 MHz for writing in time-order. 64 MHz for reading by channel. No deadtime.
- Two data streams. 1) Triggered stream: read out 1 frame before + 2 frames after trigger.
  3 × 1.6 ms window/ch × 2 MS/s × 2B/S = 19.2 kB/ch. But ~ × 5 lossless (Huffman) compression.
  - 2) "Supernova" stream: continuous readout.

Transmitter (XMIT) board. 1 board/crate reads up to 16 FEMs.

Fetching data through backplane (512 MB/s). Data sent to PCIe card on DAQ server via optical links (390 MB/s).





#### MicroBooNE PMT readout



- •
- Two gains (1.8% and 18%). •
- Shaping: 60 ns rise time. •
- 64 MHz ADC (ADS5272). ٠
  - Accurate determination of event t<sub>0</sub>.
- Read 23.44 µs around beam (1500 samples). ۲
- $0.31 \ \mu s$  (20 samples) for cosmics passing amplitude threshold. •
- Back-end electronics similar to TPC design. ۲

José I. Crespo-Anadón (Columbia)

### Zero suppression (PMT)

- The **bottleneck** of the stream is the **disk writing speed** at the DAQ PCs (assumed conservatively to be 50 MB/s).
- Neglecting header sizes:

64 Msamples/s \* 2 B/sample \* 32 PMTs \* 2 gains / 1 DAQ server = 8.2 GB/s/server

• Cannot write all data. Front End Module FPGA decides on the fly.

#### Single-PMT ADC data

#### Same data delayed by 4 samples

Subtracted pulse: original waveform – delayed one

Difference: only retain positive values from the subtracted pulse. Apply two discriminators:

- Discr0 to open an active window.
- Discr1 to cut on amplitude.



José I. Crespo-Anadón (Columbia)



### MicroBooNE trigger

- Inputs for **PMT primitives**, **accelerator signals** (BNB and NuMI beam), **external trigger** and **calibration subsystems** (UV laser calibration, cosmicray tracker).
  - Configurable logic and prescaling.
- PMT trigger based on both multiplicity and pulse height provided by an FPGA. Currently disabled. Instead, level-1 trigger on accelerator gates and software (level-2) trigger running an emulation of the FPGA algorithm at the Event Builder stage.



José I. Crespo-Anadón (Columbia)

### MicroBooNE DAQ

- Jungo Windriver to interface with PCIe card.
- TPC data distributed between 9 servers (Sub-event buffers).

PMT + GPS data in 1 server.

- Triggered stream data sent over 10 Gbps network to Event Assembler.
- Continuous readout stream written locally on each server waiting for an SNEWS alert. After a few hours, it is deleted.
- Ganglia monitoring for DAQ servers. Slow Monitoring using EPICS.



#### Supernova neutrinos



José I. Crespo-Anadón (Columbia)