The T2K Near Detector ND280 Upgrade Project

for the ND280 Upgrade WG

NNN18 Vancouver November 1, 2018

Etam NOAH for the ND280 Upgrade WG The T2K Near Detector ND280 Upgrade Project 1/27

The current ND280 detector

ND280 detectors Advantages Limitations

Upgrade project overview

Upgrade configuration The SuperFGD High angle TPCs TOF

Upgrade: expected performances

Reconstruction efficiency sFGD pattern recognition Neutron detection Angular acceptance Impact on T2K oscillation analyses

Upgrade prototypes

SuperFGD prototypes TPC prototype tests TOF prototype tests

Summary

Summary

イロト イポト イヨト イヨト

The current ND280 detector

Upgrade project overview Upgrade: expected performances Upgrade prototypes Summary ND280 detectors Advantages Limitations

T2K off-axis beam

イロン イヨン イヨン イヨン

3

The current ND280 detector

Upgrade project overview Upgrade: expected performances Upgrade prototypes Summary ND280 detectors Advantages Limitations

ND280 Detectors

- "Basket" components:
 - Tracker: 3 TPCs and 2 FGDs.
 - π^0 detector (P0D).
 - ECAL (Upstream and downstream).
- Other components:
 - Barrel ECAL.
 - Muon detector (SMRD).
- Design driven by the physics goals of early 2000: measure θ₁₃
 NIM A 659 (2011) 106-135

イロト イヨト イヨト イヨト

The current ND280 detector

Upgrade project overview Upgrade: expected performances Upgrade prototypes Summary ND280 detectors Advantages Limitations

ND280 Purpose

Systematics for FHC

- Constraining of flux and cross-section measurements for T2K oscillation analyses.
- Neutrino cross-section measurements PHYSICAL REVIEW D 96, 092006 (2017).

	ν_e CCQE-like	ν_{μ}	$\nu_e \text{ CC1}\pi^+$
Source of uncertainty	$\delta N/N$	$\delta N/N$	$\delta N/N$
Flux (w/ ND280 constraint)	3.7%	3.6%	3.6%
Cross section (w/ ND280 constraint)	5.1%	4.0%	4.9%
Flux+cross section (w/o ND280 constraint) (w/ ND280 constraint)	11.3% 4.2%	10.8% 2.9%	16.4% 5.0%
FSI + SI + PN at SK	2.5%	1.5%	10.5%
SK detector	2.4%	3.9%	9.3%
All (w/o ND280 constraint) (w/ ND280 constraint)	12.7% 5.5%	12.0% 5.1%	21.9% 14.8%

イロン イヨン イヨン イヨン

æ

UNIVERSITÉ

ND280 detectors Advantages Limitations

Current ND280 configuration: advantages

- Magnetised detector: rejection of wrong sign beam component.
- Active target.

UNIVERSITÉ

- TPCs: 3D reconstruction, charge, momentum and particle ID.
 - electron and muon separation at > 4σ

イロト イヨト イヨト イヨト

ND280 detectors Advantages Limitations

Current ND280 configuration: limitations

Limited angular acceptance for high-angle and backward tracks.

• • • • • • • • • • •

ND280 detectors Advantages Limitations

Current ND280 configuration: limitations

- Limited angular acceptance for high-angle and backward tracks.
- Angular acceptance different to SK (4π).

UNIVERSITÉ

・ロト ・回ト ・ヨト

< E

ND280 detectors Advantages Limitations

Current ND280 configuration: limitations

- Limited angular acceptance for high-angle and backward tracks.
- Angular acceptance different to SK (4π) .

UNIVERSITÉ

- Poor detection and identification efficiency for e < 1 GeV (γ conversion contamination).
- No track direction determination: large Out-Of-Fiducial Volume (Out FV) background.

イロト イヨト イヨト イヨト

Upgrade configuration The SuperFGD High angle TPCs TOF

ND280 upgrade configuration

- Redesign of upstream part of
 - "Basket" components:
 - Novel SuperFGD: two tons 3D fine grained plastic scintillator target.
 - Two new horizontal "high-angle" TPCs (hTPC).
 - TOF planes all around.
- Current downstream tracker FGDs + TPCs unchanged
- Project timeline:
 - Design and construction 2017-2021.
 - Installation 2021.
 - First data taking expected 2022.

イロト イヨト イヨト イヨト

Upgrade configuration The SuperFGD High angle TPCs TOF

The SuperFGD

Novel design of a 3D fine grained

scintillator detector

- Active tracking volume from 1 cm-sized plastic scintillator cubes
- 2 tons from 1.92 (w) × 0.56 (h) × 1.92 (drift) m³.
- 2 × 10⁶ cubes.
- 6 × 10⁴ channels (MPPC readout).
- WLS fibers in 3 directions.

Detector readout:

- 3D view provides detailed 3D reconstruction.
- 4π acceptance.
- Tracking for particles entering the TPCs.
- Detection of activity around vertex.

Upgrade configuration The SuperFGD High angle TPCs TOF

High angle TPCs

- Design based on successful operation
 - of T2K TPCs
 - 2 volumes of 1.8 (w) × 0.7 (h) × 1 (drift) m³.
 - 8 MM per volume.
 - Same T2K voltage and gas.
 - 2% material budget.
 - Momentum resolution of 10% at 1 GeV.
- Two main changes w.r.t existing TPCs:
 - Field cage: reduced dead space and maximised tracking volume, single wall box for gas containment and electrical insulation.
 - Resistive MicroMegas: charge spread on pads, good detection performance also for short drift distances: similar point resolution with larger pads: fewer electronics channels: protection of FE electronics from sparks no longer needed so more compact electronics maximises acceptance.

イロト イヨト イヨト イヨト

Upgrade configuration The SuperFGD High angle TPCs TOF

TOF system

- TOF planes surround new tracker (sFGD + hTPCs).
- Purpose: determination of particle direction for better rejection of incoming background.
- TOF structure.
 - Panels of cast scintillator bars of 230 (I) × 12 (h) × 1 (w) cm³.
 - Arrays of 8 6 × 6 mm² SiPMs.
 - 2 sides readout.
 - 150 ps resolution.

イロト イヨト イヨト イヨト

UNIVERSITÉ

Reconstruction efficiency sFGD pattern recognition Neutron detection Angular acceptance Impact on T2K oscillation analyses

Upgrade: expected performances from simulations

- Optimal design defined from simulations: 3D view is key:
 - ▶ sFGD: high reconstruction efficiency in all directions (~90% for muons).
 - sFGD: lower detection thresholds for protons (~ 300 MeV).

イロト イヨト イヨト イヨト

Reconstruction efficiency sFGD pattern recognition Neutron detection Angular acceptance Impact on T2K oscillation analyses

sFGD pattern recognition

- sFGD high granularity allows for excellent pattern recognition.
- Disentangling one/two tracks looking at the light yields in first cubes.
 - disentangling electrons from photon conversion (ν_e background.)

UNIVERSITÉ

Reconstruction efficiency sFGD pattern recognition Neutron detection Angular acceptance Impact on T2K oscillation analyses

Upgrade: expected performances from simulations

- Neutron detection would be of great interest for neutrino interaction models studies.
 - Preliminary studies of SuperFGD detection efficiency look very promising.
 - Further developments are ongoing (energy/angular resolution, gamma background discrimination).

< E

Reconstruction efficiency sFGD pattern recognition Neutron detection Angular acceptance Impact on T2K oscillation analyses

Upgrade: expected performances from simulations

- Larger angular acceptance from new TPCs and TOF.
 - Reconstruction efficiency expected to drastically improve.
 - ... especially for high-angle and backward going tracks.
- Approx. ×2 more events expected for a given exposure thanks to larger target mass.
- Further reduction in the OOFV background thanks to the TOF.

UNIVERSIT

CERN-SPSC-2018-001

- (E

Selection	Current-like	Upgrade-like
$ \nu_{\mu} $ (ν beam)	93,401	194,654
$\bar{\nu}_{\mu}$ ($\bar{\nu}$ beam)	33,437	63,687
$ \frac{\nu_{\mu}}{(\bar{\nu} \text{ beam})} $	17,998	33,773

expected numbers for 1x10²¹ POT

Reconstruction efficiency sFGD pattern recognition Neutron detection Angular acceptance Impact on T2K oscillation analyses

Upgrade: expected performances from simulations

- ND280 upgrade estimated impact on T2K oscillation analyses.
- Low momentum thresholds and full angle coverage will contribute better samples to study nuclear effects.
- Work in progress to demonstrate the capability of the new detector configuration to disentangle possible wrong/incomplete cross-section models.

Parameters	Reduction of the uncertainty
Flux	20 %
σ _ν (CCQE/2p2h)	20% - 40%
FSI	45 %
σ_{ν} (Q ² dependent)	25 %

-

Reconstruction efficiency sFGD pattern recognition Neutron detection Angular acceptance Impact on T2K oscillation analyses

EXPECTED PERFORMANCES

- Low momentum threshold and full angle coverage will grant better samples to study nuclear effects
- Single Transverse Variable analyses with the upgrade geometry seems to be very powerful to disentangle nuclear effects

Print Print

SuperFGD prototypes TPC prototype tests TOF prototype tests

SuperFGD prototypes

- Extruded scintillator bars cut to cubes:
 - Polysterene based, 1.5 % PTP, 0.01% POPOP.
 - Reflective coating 30 to 100 µm from chemical etching of surface.
 - ... NIM A469 (2001) 340.
 - Kuraray WLS fiber (S-type, dia 1.0 mm).
 - Eljen EJ-500 optical cement.
 - Custom optical connector.

5 × 5 × 5 proto tested at CERN Oct. 2017

- Light yield
- Optical crosstalk
- Time resolution

• $48 \times 24 \times 8$ proto tested at CERN summer 2018

- Tested in 0.2 T magnet.
- Readout electronics optimisation and calibration.
- Track and pattern recognition.
- Stopping protons.
- Photon conversion.

イロト イヨト イヨト イヨト

UNIVERSITÉ DE GENÉVE

SuperFGD prototypes TPC prototype tests TOF prototype tests

\blacktriangleright 5 × 5 × 5 prototype.

- Charge and time spectra for a single cube, two fibers.
- Time resolution for a cube with two fibers is σ_t = 0.65 - 0.71 ns.
- Crosstalk average value is 3.7 % per side of cube.

イロン イヨン イヨン イヨン

æ

SuperFGD prototypes TOF prototype tests

- $48 \times 24 \times 8$ prototype.
 - 1728 MPPCs: 3 types.
- Baby MIND electronics
- Calibration for beam tests.
 - Use LED at low p.e.
 - Use beam particles at higher p.e.

D UNIVERSITÉ

Etam NOAH for the ND280 Upgrade WG

æ

SuperFGD prototypes TPC prototype tests TOF prototype tests

・ロト ・回ト ・ヨト ・ヨト

æ

SuperFGD prototypes TPC prototype tests TOF prototype tests

Etam NOAH for the ND280 Upgrade WG The T2K Near Detector ND280 Upgrade Project 24/27

1 > 《문 > 《문 > 《문 >

Э

SuperFGD prototypes TPC prototype tests TOF prototype tests

- TPC test beam at CERN this summer 2018.
- Using HARP TPC field cage with one resistive MM.
- Different beam settings, cosmic and radioactive source data collected to study the resistive MM performances.
- Data being analysed, but preliminary results look promising.

SuperFGD prototypes TPC prototype tests TOF prototype tests

 Several tests of TOF prototypes at CERN.

- Autumn 2017: ~ 70 ps time res. for 1.5 m bars.
- Summer 2018: panels prototypes with 168 × 6 × 1 cm³ bars tested.
- Autumn 2018: beam test with ND280 upgrade bars.

イロン イヨン イヨン イヨン

æ

Etam NOAH for the ND280 Upgrade WG The T2K Near Detector ND280 Upgrade Project 26/27

Summary

- The ND280 detectors play a significant role in the reduction of flux and cross-section systematics in T2K oscillation analyses.
- Since 2009 they have performed very well. However the current design configuration does have Limitations.
- An upgrade of the detector suite is underway to strengthen T2K physics potential.
 - Detectors tested this summer at CERN-PS
 - ... including a novel 3D fine grained scintillator detector
 - ▶ Installation of final detectors foreseen at J-PARC for summer 2021.

イロト イポト イヨト イヨト