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e Long baseline (1300 km) accelerator neutrino experiment spanning
between Chicago and South Dakota

e Large (40 kt) LArTPC far detector plus near detector

e Far detector deep (1.5 km) underground at Homestake Mine

O Four 10-kt fiducial mass modules
o  Two planned types: single phase (LAr only) and dual phase (LAr + GAr)
* Physics goals: v oscillations (mass ordering, 6, 6,,, 6,,), baryon
number violation (e.g. nucleon decay), supernova burst neutrinos
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ProtoDUNE Single Phase

« Test of single-phase far detector technology
« Contains 6 modular drift cells
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3.6 m drift length

Suspended Anode (APA) and Cathode (CPA)
Plane Assemblies

Wrapped wires form induction planes

~ 5mm wire pitch

500 V/cm drift electric field
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LArTPC Signal Formation

V wire plane waveforms Y
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MicroBooNE collaboration, JINST 13, P0O7006 (2018)

Charged particles in LAr lead to
ionization electrons

O

Initial loss due to
recombination

Electrons drift towards anode

plane
(©]

Drift is affected by space
charge, electron lifetime,
diffusion (transverse and
longitudinal)

lonization signal measured by
two induction planes and one
collection plane
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ProtoDUNE-SP Event Display - First Data!

600 700
Wire Number

Hannah Rogers | DUNE Single Phase Signal Processing ) sassmanesmare DUVE



MicroBooNE HB@

e Single-Phase LArTPC running since 2015 e Provides R&D and a test facility for DUNE
o 85 ton active mass o  Very similar detector technology and signal
o Largest active LArTPC in US readout / processing

e Located at Fermi National Accelerator
Laboratory in the Booster Neutrino Beam

Smaller wire pitch (3mm)

Lower drift electric field (273 V/cm)

No grid plane before first induction plane
o Induction plane wire lengths vary

e MicroBooNE experience can be used to

improve signal-to-noise at DUNE!
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<¢—— Collection Wire

Raw Waveforms

Raw waveform output results in bubble-chamber-like images with high spatial resolution and
calorimetric information
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3D Event Reconstruction

Run 3493 Event 41075, October 23", 2015

induction plane 1 induction plane 2 collection plane 2

pBooNE
data

Q _ candidate neutrino vertex

'YW «— time (depth) direction

wire direction

e Three wire plane views can be combined
to recreate the 3D topography of the
event
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Signal Formation - Wire and Electronics Responses

Number of lonized
Electrons
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MicroBooNE collaboration, JINST 13, PO7006 (2018)
MicroBooNE collaboration, JINST 13, P07007 (2018)

Current on a wire (wire response)

determined by Shockley-Ramo’s theorem
o  Weighting potential calculated using 2D
Garfield simulation

Account for long-range effects by
including induced charge on neighboring
wires (+ 10 wires)
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Signal Formation - Wire and Electronics Responses
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Signal Deconvolution

“Collection” Plane (Y) o _
- e Necessary to accurately locate ionization
' ¢"MicroBooNE

\ signals and determine charge
~ Unipolar Signal e Removes detector response, R(w)
\ e Includes filter function, F(w), to mitigate
high frequency noise influence
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Signal Deconvolution - 1D

“Collection” Plane (Y)

. ‘w MicroBooNE

Raw Waveform (M)
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Only considers the measured signal on a single wire with respect
to time
o Ignores induced charge on neighboring wires
Assumes response is independent of ionization electron topology
o  Tracks nearly perpendicular to the wire plane reconstruct poorly
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Signal Deconvolution - 2D and ROI Finding

e Uses both timing and wire information

to determine charge and track position M;(w) Ry(w) Ri(w) ...Ry,2(w) Ruoi(w)\ [ Si(w)

o Accounts for induced charge on M (w) Ri(w) Ro(w) ...Ry3(w) Ruza(w)| | S2(w)
neighboring wires : = : T : :

e Low-frequency noise amplified for Mp-1(0) | | Ri2(w) Ry3(w) ... Ro(w) Ri(w) | |Sn-1(w)

induction Signa| M, (w) R, 1(w) Rya(w) ... Ri(w) Ro(w) Sn(w)

o Use ROI-finding algorithm to suppress
noise
m ROl = Region of Interest
o ROlIls determined from loose and tight
low-frequency filters
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Signal Deconvolution Comparison

Raw After Noise Filtering 1-D Deconvolution 2-D Deconvolution
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Performance of Signal Processing at MicroBooNE

Full signal processing chain allows for cross-plane charge matching
lonization charge extracted from (bipolar) induction plane signal

2D deconvolution performs better than 1D deconvolution

Remaining mismatch due to electronics noise, non-ideal wires, inaccurate field responses

in deconvolution
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Time Tick

39Ar Beta Decays

& ss00 : i
= - +.¢.+ MicroBooNE Preliminary
S 3000 -
B = + —e— Threshold: 1500 " ) L . . .
§ zso0f % s fimestiold: Bl e Uniformly-distributed, point-like decays with
feud C -+ .
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I —- |
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MicroBooNE Preliminary diffusion)
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o  Can measure wire-to-wire variations
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MicroBooNE Collaboration, MICROBOONE-NOTE-1050-PUB
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Arb. Units

39Ar - A Case Study for Signal Shape

All charge collected on central wire:

Some charge collected on side wires:

0.16 = MicroBooNE Simulation, Preliminary ,‘2 0.16 = MicroBooNE Simulation, Preliminary
0.14f c 0.4f
0.12F — Central Wire = .12F — Collection Only Area
3 £ 2 :
0.1f ' < Ok . normalized
0.08F — +1 Wires 0.08F — Collection + 3 x Induced
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e Some collection and induction on same wire:
o  Shifts peak forward in time
o Does not change total charge (bipolar signal integrates to zero)
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39Ar - A Case Study for Signal Shape
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Conclusions

Single-phase LArTPCs at DUNE far detector require dedicated signal processing chain to
locate ionization electrons and reconstruct charge information
Three-wire-plane readout allows for 3D event reconstruction and precise calorimetry
MicroBooNE has enabled development of signal processing techniques for
next-generation LArTPC experiments such as DUNE

o 2D deconvolution includes long-range effects from induced charge on neighboring

wires

o Point-like activity such as 3°Ar beta decays can be used to measure wire response

Next step: exercise these signal processing techniques at ProtoDUNE-SP
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DEEP UNDERGROUND NEUTRINO EXPERIMENT

Thank you!
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DEEP UNDERGROUND NEUTRINO EXPERIMENT

Backup Slides
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ROI-Finding Algorithm

: g Notation
A given wire plane;
ADC waveforms A chrasale HF(LF): high(low) frequency
RMS: noise root mean square
2D deconvolution e
Excess Noise filtering —H Filter in wire dimension ADpY FEGU
Two types of filters in time dimension Gaussian filter g

+ +

Apply HF-cut . :
[ Wiener filter RMS calculation

No

Induction plan Intermediate ROIs||Final ROls

r

Baseline
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]
A4 : : Refinement of ROIs
/ RMS calculation /L--

23 Hannah Rogers | DUNE Single Phase Signal Processing °°L°““°°SWE DU(VE

UNIVERSITY



