

Results - Daya Bay, RENO, and Double Chooz

Henry Band

Yale University

For the Daya Bay Collaboration

Outline

- Introduction
- θ_{13} experiments, near/ far detectors, similarities and differences
- Recent improvements increased statistics, improved analysis, better calibration
- $\mathrm{Sin}^2 \ 2 heta_{13}$ and Δm_{ee}^2
- Reactor neutrino anomaly, flux deficit, spectrum shape, fuel evolution
- Other results

Reactor Antineutrino oscillations

Antineutrino Detection

• Inverse β -decay (IBD): coincidence of two consecutive signals $\bar{\nu}_e + p \rightarrow e^+ + n$ (prompt signal) $\sim 30\mu s$ (0.1% Gd) $+ p \rightarrow D + \gamma$ (2.2 MeV) (delayed signal) ~15% $+ Gd \rightarrow Gd^* \rightarrow Gd + \gamma's$ (8 MeV) (delayed signal) ~85%

- Powerful background rejection
- Positron preserves most information about antineutrino energy

Daya Bay Experimental Layout

Detectors

• The antineutrino detectors (ADs) are "three-zone" cylindrical modules immersed in water pools

Energy resolution $\approx 8.5\%/VE (MeV)$ NIM A 811, 133 (2016)

GdLS region defines the target mass

RENO

- Surrounding LS improves detection of γrays
- MO buffers outside
- backgrounds
- Water reduces backgrounds & detects muons
- Additional muon detection above

Double Chooz

Band - NNN18

IBD Selection

•

•

•

Improved calibration & modeling

- Statistical error in $\overline{\nu}_e$ rates are ~ 0.05 % (near), ~0.14% (far), background uncertainty ~ 0.12% - minimize systematic errors
- Recent work by Daya Bay to improve energy model
 - Measured non-linear electronics response with FADC readout in parallel with standard electronics <u>NIM A895, 48-55 (2018)</u>
 - Deployed ⁶⁰Co calibration sources with different encapsulating materials, to constrain optical shadowing effects
 - Constructed improved energy response model

Band - NNN18

Further improvements

- New energy model reduces uncertainty from 1.0 to 0.5%
- Increased statistics allow an improved estimate of the rate βn decays of cosmogenically produced ⁹Li/⁸He
- Review of the spent nuclear fuel (SNF) history with power plant reduced its uncertainty from 100% to 30% (SNF=0.3% of total rate)

Band - NNN18

Daya Bay - 1958 days of data Dec 24, 2011 to Aug 30, 2017

TABLE I. Summary of signal and backgrounds. Rates are corrected for the muon veto and multiplicity selection efficiencies $\varepsilon_{\mu} \cdot \varepsilon_{m}$. The procedure for estimating accidental, fast neutron, Am-C, and (α ,n) backgrounds is unchanged from Ref. [7].

	EH1		EH2		EH3			
	AD1	AD2	AD3	AD8	AD4	AD5	AD6	AD7
$\overline{\nu}_e$ candidates	830036	964381	889171	784736	127107	127726	126666	113922
DAQ live time (days)	1536.621	1737.616	1741.235	1554.044	1739.611	1739.611	1739.611	1551.945
$\varepsilon_{\mu} imes \varepsilon_{m}$	0.8050	0.8013	0.8369	0.8360	0.9596	0.9595	0.9592	0.9595
Accidentals (day^{-1})	8.27 ± 0.08	8.12 ± 0.08	6.00 ± 0.06	5.86 ± 0.06	1.06 ± 0.01	1.00 ± 0.01	1.03 ± 0.01	0.86 ± 0.01
Fast neutron (AD ^{-1} day ^{-1})	0.79 ± 0.10		0.57 ± 0.07		0.05 ± 0.01			
${}^{9}\text{Li}/{}^{8}\text{He}(\text{AD}^{-1}\text{day}^{-1})$	2.38 ± 0.66		1.59 ± 0.49		0.19 ± 0.08			
Am-C correlated(day ^{-1})	0.17 ± 0.07	0.15 ± 0.07	0.14 ± 0.06	0.13 ± 0.06	0.06 ± 0.03	0.05 ± 0.02	0.05 ± 0.02	0.04 ± 0.02
$^{13}C(\alpha, n)^{16}O(day^{-1})$	0.08 ± 0.04	0.06 ± 0.03	0.04 ± 0.02	0.06 ± 0.03	0.04 ± 0.02	0.04 ± 0.02	0.04 ± 0.02	0.04 ± 0.02
$\overline{\nu}_e$ rate (day ⁻¹)	659.36 ± 1.00	681.09 ± 0.98	601.83 ± 0.82	595.82 ± 0.85	74.75 ± 0.23	75.19 ± 0.23	74.56 ± 0.23	75.33 ± 0.24

10⁵ 10⁴

Daya Bay

ArXiv:1809.02261

 See a clear rate and shape distortion that fits well to the 3neutrino hypothesis
Rate+shape

Daya Bay

- Oscillation Results with 1958 Days
- Measure sin²2 θ_{13} and $|\Delta m^2_{ee}|$ to 3.4% and 2.8% respectively

RENO & Double Chooz

 $\sin^2 2\theta_{13} = 0.0896 \pm 0.0068$ $|\Delta m_{ee}^2| = (2.68 \pm 0.14) \times 10^{-3} \text{ eV}^2$

combined nGd+nC+nH $\sin^2 2\theta_{13} = 0.105 \pm 0.014$

Global Comparison

results presented at Neutrino 2018 conference

- Daya Bay best precision of θ_{13} in the foreseeable future
- Agreement of Δm^2_{32} between accelerator & reactor experiments
- Analysis of nH events in all detectors consistent with nGd events

Antineutrino Flux - Absolute rate, spectrum shape, fuel evolution

- A re-evaluation of the ve theoretical flux prediction from reactors by (Huber-Mueller) in 2011 revealed a ~6% deficit in rates measured by many short baseline experiments. This "reactor antineutrino anomaly" (RAA) lead to the prediction of "sterile" neutrinos to explain the deficit.
- Discrepancies between the predicted antineutrino and measured energy spectrum (a "bump" between 4<E<6 MeV) were seen by the θ₁₃ experiments in 2014.

Phys. Rev. D 83 (2011)

• By measuring the changes in $\overline{\nu}_{\rm e}$ rate with reactor fuel burnup and refueling cycles, the individual contributions of each fuel type to the $\nu_{\rm e}$ spectrum could be measured. In 2017, Daya Bay measured a ~2.8 σ smaller contribution from ²³⁵U than expected.

Absolute reactor flux

- Updated analysis with reduced systematic errors
 - Daya Bay 1260 days

ArXiv:1808.10836

- $R_{data/pred}$ (Huber-Mueller) = $0.952 \pm 0.014(exp.) \pm 0.023(model)$
- $\sigma_f = (5.91 \pm 0.09) \times \frac{10^{-43} \text{ cm}^2}{\text{fission}}$
- RENO 2200 days Yu @ Neutrino2018

17

Energy spectrum

 All 3 experiments see deviations from the expected shape in the 4-6 MeV region **Double Chooz**

Band - NNN18

Buck @Neutrino2018 Data (ND⊕FD) to MC Prediction Ratio χ² / dof: 12.1 / 20 (prob: 91.2%) **R** = α (0.959±0.01) - β (0.017±0.003 MeV⁻¹) × E R(pull deficit) = 0,945 ± 0.008 N=(12.1±0.1)% N=(7.8+0.3 μ=(4.82±0.14)MeV u=(5.8±1.4)MeV σ=(0.49±0.11)MeV -(0.29±0.13)MeV 0 2 Visible Energy (MeV) **Daya Bay Chinese Phys. C** 41(1)(2017). 80000 (A) 🗕 Data Full uncertainty 60000 Reactor uncertainty 40000 Integrated 20000 Prediction + Mueller) 1.2E Ratio to I (Huber + 0.9 0.8 (C) χ^2 contribution ($\overline{\chi}_1$) 10-2 8 10⁻³ 쇼 10-4 8 10-5-18 1 MeV window 10-6 Prompt Energy (MeV)

Reactor Fuel evolution

- Composition of the reactor core changes with time
- Partially reset by refueling operations every 12-18 months

Daya Bay ArXiv:1704.01082 Phys.Rev.Lett. 118 (2017) no.25,

Band - NNN18 251801

Daya Bay

Best fit IBD yields $^{235}U 6.17 \pm 0.17 10^{-43} \text{ cm}^2/\text{fission}$ $^{238}Pu 4.27 \pm 0.26 10^{-43} \text{ cm}^2/\text{fission}$ compare to model predictions $^{235}U 6.69 \pm 0.15 10^{-43} \text{ cm}^2/\text{fission}$ $^{238}Pu 4.36 \pm 0.11 10^{-43} \text{ cm}^2/\text{fission}$

Phys.Rev.Lett. 118 (2017) no.25, 251801 1230 days

RENO

ArXiv:1806.00574 1808 days

Measured yields per fission 235 U 3.0 σ deficit relative to H-M 239 Pu 0.8 σ deficit relative to H-M

Best fit IBD yields 235 U 6.15 ± 0.19 10⁻⁴³ cm²/fission 238 Pu 4.18 ± 0.26 10⁻⁴³ cm²/fission In good agreement with Daya Bay values

Band - NNN18

Other results

- Daya Bay
 - Search for Time-Varying Antineutrino Signal -ArXiv:1809.04660
 - Seasonal Variation of the Underground Cosmic Muon Flux - JCAP 1801 n°1 (2018)
 - Cosmogenic neutron production at Daya Bay - Phys. Rev. D97, 052009 (2018)
 - Search for neutrino decoherence Eur. Phys. J. C77, 606 (2017)
 - Improved search for a sterile neutrino (with Bugey-3 + MINOS) Phys. Rev. Lett. 117, 151801 (2016), 151802 (2016),
 - Independent measurement of θ₁₃ via neutron capture on hydrogen Phys. Rev. D93, 072011 (2016)

Other results

- Double Chooz
 - Yields and production rates of cosmogenic 9Li and 8He measured with the Double Chooz near and far detectors ArXiv:1802.08048
 - Novel event classification based on spectral analysis of scintillation waveforms in Double Chooz ArXiv:1710.04315
 - Study of the light production mechanism of epoxy resins in an electric field Nucl.Instrum.Meth. A845 (2017) 404-407
 - Characterization of the Spontaneous Light Emission of the PMTs used in the Double Chooz Experiment JINST 11 (2016) no.08, P08001
 - Measurement of θ13 in Double Chooz using neutron captures on hydrogen with novel background rejection techniques JHEP 1601 (2016) 163

- RENO
 - Search for Sterile Neutrinos at RENO, I. Yu, J.W. Seo - Neutrino2018

Summary

- All 3 θ_{13} experiments have more data to analyze & continue to improve statistical and systematic errors
- Daya Bay and RENO will likely run till 2020
- Daya Bay has the most precise measurements of

 $\sin^2 2\theta_{13} = 0.0856 \pm 0.0029$

 $|\Delta m_{\rm ee}^2| = (2.522 + 0.068 - 0.070) \times 10^{-3} \, {\rm eV}^2$

 $\left|\Delta m_{32}^2\right| = (2.471 + 0.068 - 0.070) \times 10^{-3} \text{ eV}^2$ (NH)

 $\left|\Delta m_{32}^2\right| = (-2.575 + 0.068 - 0.070) \times 10^{-3} \text{ eV}^2$ (IH)

expect relative error of $\sin^2 2\theta_{13} < 3\%$ by 2020

- All 3 θ_{13} experiments see similar discrepancies between data and predictions of the antineutrino flux from reactors
 - $R_{\text{data/pred}} = 0.918 \pm 0.018$ (RENO), 0.952 ± 0.014 (DB), $\sim 0.940 \pm 0.011$ (DC)
 - Excess events in the 4-6 MeV region
- Compared to the Huber-Mueller model, Daya Bay (RENO) measure a 235 U deficit of 2.9 σ (3.0 σ)

Backups

Prediction of antineutrino spectrum

Total antineutrino Spectrum:

$$S(E) = \frac{W_{th}}{\sum_{i} f_{i} e_{i}} \sum_{i} f_{i} S_{i}(E) + S_{neq} + S_{SNR}$$

W_{th}: reactor thermal power

f_i: fraction of fissions due to isotope i

e_i: energy released/fission

 $S_i(E)$: the $\bar{\nu}_e$ energy spectrum

 S_{neq} : reactor non-equilibrium effects

 S_{SNF} : contribution from spent nuclear fuel

Isotope	Energy per Fission (MeV)
$^{235}\mathrm{U}$	202.36 ± 0.26
$^{238}\mathrm{U}$	205.99 ± 0.52
²³⁹ Pu	211.12 ± 0.34
$^{241}\mathrm{Pu}$	214.26 ± 0.33

✓ pure $\overline{\nu}_e$ source ✓ Averaged 6 $\overline{\nu}_e$ /fission ✓ 6×10²⁰ $\overline{\nu}_e$ /sec/3 GW_{th}

ILL(exp. : 2.7% uncertainty) + Vogel (calculation< 10% uncertainty)
Huber+Mueller's new calculation (2.4% uncertainty)

Generic reactor antineutrino spectrum

Unfolded antineutrino spectrum $\times 10^{5}$ (×10³) antineutrinos/MeV n 7 8 antineutrino energy/MeV With 621 days of data, Ref.: CPC41.1.013002 (2017) antineutrino energy/MeV

- Unfolding to antineutrino energy: singular value decomposition (SVD) regularization method and Bayesian iterative method give consistent results
- A model-independent spectrum for other reactor experiments, with small correction to different fission fractions.

Effective Mass Splitting

Full oscillation probability:

$$P_{\overline{\nu}_e \to \overline{\nu}_e} = 1 - \sin^2 2\theta_{13} \left(\cos^2 \theta_{12} \sin^2 \frac{\Delta m_{31}^2 L}{4E} + \sin^2 \theta_{12} \sin^2 \frac{\Delta m_{32}^2 L}{4E} \right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \frac{\Delta m_{21}^2 L}{4E}$$

Effective oscillation probability:

$$P_{\overline{\nu}_e \to \overline{\nu}_e} = 1 - \sin^2 2\theta_{13} \frac{1.267\Delta m_{ee}^2 L}{E} - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \frac{\Delta m_{21}^2 L}{4E}$$

For Daya Bay's L/E values S:

$$P_{\overline{\nu}_e \to \overline{\nu}_e} = 1 - 4s_{13}^2 c_{13}^2 \left[\frac{1 - \cos(2\Delta_{32} \pm \phi)}{2} \right] - (\text{solar term}) \qquad \text{where:} \quad \Delta_x = \Delta m_x^2 \frac{L}{4E}$$
$$= 1 - \sin^2 2\theta_{13} \sin^2 (\Delta_{32} \pm \phi/2) - (\text{solar term})$$

Comparing this expression with the effective one we conclude:

$$|\Delta m_{ee}^2| = |\Delta m_{32}^2| \pm \left(\phi \times \frac{4E}{L}\right)/2$$

= $|\Delta m_{32}^2| \pm (5.17 \times 10^{-5}) \text{ eV}^2$

The fit is always done with the full oscillation probability.

Advantage:

$$\frac{L}{2} - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \frac{\Delta m}{4}$$

Near/Far Ratio

• 100% cancellation of flux uncertainty with one reactor, one near and one far detector

Statement (~80% suppression) in arXiv:1501.00356 regarding DYB is incorrect

Band - NNN18

Side-by-side comparison

Precision on Oscillation Parameters

• Plan to run till 2020: uncertainties of $\sin^2 2\theta_{13}$ below 3%

Side-by-side Spectral Comparison

