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Convolutional Neural Networks (CNNs) have demonstrated success 1n

- classification problems such as event identification. We propose a regression
iglvﬁlf::/%temr@fac e ._ CNN based methoc} to reconstruct electron neutrino energy and electron energy
$10 km die e o TGy ek at NOvA. This method can also be extended to solve other regression problems
s br SR A - in HEP, taking over kinematics-based reconstruction tasks
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Upgraded NuMI muon neutrino beam at Fermllab (700 kW design)

Longest baseline in operation (810 km), large matter effect (£30%), sensitive - e

' NOvVA pioneered application of CNNSs 1n
to mass hlerarChy flavor tagging problems (CVN)

Far/Near detector sited 14 mrad off-axis, narrow-band beam around oscillation Ve » v, and NC analyses at NOVA all use CVN
maximum, small wrong sign components as event selector

Regression Convolutional Neural Network for v, CC and Electron Energy o
0SS Tunction
Input pixel maps for neutrino energy — full event CNN Architecture
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* Provides appropriate surrogate to
optimize energy resolution

Ereco true/ Etrue
e Use absolute error instead of mean

squared error to prevent large impacts
from outliers

NOVA Simulation * CVN/GoogleNet are designed and

Side View
o trained for classification tasks,
Reconstructed meemnl  optimized training hyperparameters for
. . Vertex vertex regression task
* Siamese architecture * Uses Inception modules » Hyperparameter optimization software

° Reco_nstructed vertex mputs for * Linear output for continuous variables QHERPA used
location dependency » No regularization

Flat flux vs. Regular Flux Training

Results

Neutrino Energy Electron Energy

To minimize dependence of estimated neutrino energy on true neutrino

energy, a flat neutrino flux shape 1s used to generate Far Detector MC
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Energy scale from the flat flux training has less biases vs. true neutrino energy.

(RecoE-TraeE)/TrueE | | (RecoE-TraeE)/TrueE
* Calorimetric energy - sum of calibrated calorimetric energy with a scale factor
* Kinematic energy - based on the method used in NOvA's v, analysis in 2017:
E(ve) = A*Egy + B*Eysp + C*Epy * + D*Eypp°
* CNN Energy - proposed regression CNN energy estimator

Systematic Uncertainties

* Systematic uncertainties in the
energy reconstruction from the
simulation of neutrino interactions
are evaluated by using the
reweighing knobs built into GENIE

* The regression CNN shows
smallest systematic uncertainties
from the simulation of neutrino
interactions
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Syst. of energy scale: — CNN Energy
Cal. Energy: 0.9% :

Kinematic Energy: 0.6%

CNN Energy: 0.2%

NOvA Simulation NOvVA Simulation

o
N
(&)

e CNN Energy
0 Kinematic Energy
A Calorimetric Energy

® CNN Energy

A Calorimetric Energy

Relative RMS

Relative RMS
Events / 18.0 x 10°° POT

Reco. E,. Energy Scale vs. True E,

0-1GeV 1-2GeV 2-3GeV 3-4GeV 4-5GeV E™ 0-1GeV 1-2GeV 2-3GeV 3-4GeV 4-5GeV EM° _ _ . .
NOVA Simulation NOVA Simulation

o CNN Energjy o CNN Enereg
o Kinematic Energy 2o o Kinematic Energy
~  Calorimetric Energy A _Calorimetrip Energy

* Energy scale of the three estimators shows no significant biases with respect to
the true neutrino energy, and the regression CNN has better energy resolutions
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