Neutrino Interaction Uncertainties at T2K

T2K jargon for "Neutrino Interactions Working Group", prounced "noog"

Kevin McFarland University of Rochester representing the T2K collaboration 2 November 2018 NNN 2018, Vancouver

Outline

- I. T2K's oscillation analysis
- II. Neutrino Interaction Model
- III. Key Uncertainties and Strategies for reducing them

K. McFarland, Neutrino Interaction Uncertainties @ T2K

Samples: Near and Far

• Off-axis near detector samples divided by visible pion content, beam focusing

Reconstructed muon momentum (and angle) for both CH target and CH+H₂O targets, separately.

INTERACTION MODEL

- Ingredients
- Important uncertainties

Processes on Nucleons

- Llewlleyn-Smith CC elastic
 - BBBA07 vector form factors A. Bodek et al, Eur.Phys.J. C53 (2008) 349
 - Axial Form factor from νD_2 , π electroproduction: dipole \rightarrow z-expansion (correct high Q² uncertainty)
 - Photon emission in CC radiative corrections
- Low W "resonant" single pion production
 - Rein-Sehgal w/ many unknown axial couplings and form factors, lumped into a dipole axial form factor, C_A⁵, m_A^{RES}
 - Non interference *ad hoc* non-resonant "background" model also tuned to νD_2 data (after ANL/BNL "fix")

C. Wilkinson et al, Phys. Rev. D90, 112017 (2014). P. Rodrigues et al, Eur. Phys. J. C 76, 474 (2016)

- Alternate model with resonant-background interference.
- NC1γ from Alvarez-Ruso, scaled to Wang et al study, 100% uncertainty

M. Kabirnezhad, Phys.Rev. D97 (2018), 013002

10

Processes on Nucleons (cont'd)

- DIS and multi-pion production
 - Above W of 2 GeV, free-nucleon PDFs in LO model.
 Bodek-Yang extension to low Q² form factor.
 - Fragmentation from PYTHIA but W<2 GeV multipion (2005) 113, also arXiv:1011.6592
 fragmentation handled separately and tuned on hydrogen data (custom tune)
 C. Bronner and M. Hartz, JPS Conf.Proc. 12 (2016) (10041)
- Additional poorly constrained flavor uncertainties
 - Nuclear induced second class current effective form factors?
 - At T2K E_{ν} , ~2% difference in v_e , v_{μ} CC elastic cross sections possible
 - At all energies, electroweak vertex correction differences for v_e and v_{μ} thought to be "small" (KNL theorem), but there is no calculation M. Day and K. S. McFarland. Phys. Rev. D 86, 053003 (2012)
 - T2K puts in an additional 2% systematic
 - Lumped together as v_e/v_μ , \bar{v}_e/\bar{v}_μ uncertainties

Nuclear Initial State (IS) Model~

- Use a Fermi Gas model with binding (E_B) and Fermi momentum (k_F) parameters
 - e⁻ corrected to neutrino data
 - C/O differences included
- Concerns and shortcomings
 - FG association of kinetic energy to
 - Not all parts of model use same IS
 - Concerns about consistency of (e,e') and (e,e'p), kinematic approximations led to large uncertainties.
 Recently resolved in Bodek study. A. Bodek, arXiv:1801.07975.
- Alternate IS models studied as systematic variations.

- Local Fermi Gas (Nieves), Spectral function (Benhar)

2 November 2018 J. Nieves et al, Phys.Lett. B707 (2012) 72

K. McFarland, Neutrino Interaction Uncertainties @ T2K

O. Benhar et al, Phys. Rev.

Lett. 105 (2010) 132301

Nuclear Screening (RPA)

- Long-range nucleon-nucleon correlations screen low momentum transfer reactions_
 - Random Phase Approximation or "RPA"
- Use calculation of Nieves et al – MINERvA, MiniBooNE data support it
- Evaluated theoretical uncertainties
 - "Effective RPA" model, constrained by these uncertainties: "BeRPA"

R. Gran, arXiv:1705.02932

 "RPA" only sensible for low momentum transfer processes, but data shows need for low Q² suppression in pion production. *Not incorporated.*

2 November 2018

K. McFarland, Neutrino Interaction Uncertainties @ T2K

13

Coherent/Diffractive Pion

Berger-Sehgal

- Previous NEUT implementation of Rein-Sehigal had original πC elastic scattering cross-section
 - GENIE default has improved one based on new data E_{lep} [GeV]
- Recently implemented Berger-Berger-Sehgal Sehgal becätuse of its good agreement with modern (MINERvA) data

0.5

K. McFarland, Neutrino Interaction

Uncertainties @ T2K

2p2h processes

 Initial hints from MiniBooNE, T2K, and MINERvA in lepton kinematics that this effect exists.

 Now, we have strong evidence from MINERvA, NOvA, which can be interpreted as a measurement of the process.

N

 N_2 –

- We use an *ab initio* calculation from Nieves et al, the same one that is in GENIE. But...
 - It is not complete.

J. Nieves et al., Phys. Rev. C83:045501, 2011.

> M. Martini et al., Phys. Rev., C80:065501, 2009.

W

 N'_1

 N'_{2}

- Different (also incomplete) calculations $\begin{bmatrix} \\ get very different strengths and \\ q_0 vs q_3 distributions \end{bmatrix}$
- Differences are a significant systematic effect for T2K.

2p2h processes (cont'd)

- What uncertainties are we using?
 - Strength of 2p2h is allowed to float within large uncertainties
 - Strength in delta vs non-delta processes will be allowed to vary radically, to ensure we cover the effect in reconstructed neutrino energy (new addition to our model)
 - C/O differences constrained (conservatively) by measurements of SRC in electron scattering
- Working out best practices for modeling and constraining uncertainties from MINERvA, NOvA, T2K "low recoil" style data could benefit from collaboration.
- Also, we don't have 2p2h processes for single pion production in our model (no calculation), but they should certainly be there, with similar effects.

Final State Interactions

- NEUT has its own cascade model
 - Tuned to pion and nucleon scattering on nuclei
 - Data is fairly precise
- Current approach is to use conservative uncertainties. Future oscillation analyses will use a recent T2K reanalysis (pub. in prep.).

Uncertainties @ T2K

Final State Interactions (cont'd)

- Current development
 - Use data driven uncertainties, including C/O
 - Incorporate uncertainties on cascade model itself by comparison with transport models (e.g., GiBUU)
- Also working to unify the treatment of FSI uncertainties and secondary interactions (SI) in the detector
 - Both can be done with the same cascade model
- A joint cascade model is another possible area where one could imagine collaboration

CONSTRAINTS

- Near Detector Oscillation Fits
- Near Detector Interaction Measurements

Near Detector Constraint

TZ/K NIWG

Near detector samples simultaneously ______ constrain flux and interaction uncertainties.

Near Detector Constraint

 Some cross-section uncertainties better constrained by near detector than others.

Pion and FSI parameters effectively constrained by separation of pion multiplicity at ND280

K. McFarland, Neutrino Interaction Uncertainties @ T2K

Some cross-section uncertainties better

constrained by near detector than others.

Counting Experiment

	1-Ring μ		1-Ring e			
Error source	FHC	RHC	FHC	RHC	FHC 1 d.e.	FHC/RHC
SK Detector	2.40	2.01	2.83	3.79	13.16	1.47
SK FSI+SI+PN	2.20	1.98	3.02	2.31	11.44	1.58
Flux + Xsec constrained	2.88	2.68	3.02	2.86	3.82	2.31
E _b	2.43	1.73	7.26	3.66	3.01	3.74
$\sigma(u_e)/\sigma(ar u_e)$	0.00	0.00	2.63	1.46	2.62	3.03
$NC1\gamma$	0.00	0.00	1.07	2.58	0.33	1.49
NC Other	0.25	0.25	0.14	0.33	0.99	0.18
Osc	0.03	0.03	3.86	3.60	3.77	0.79
All Systematics	4.91	4.28	8.81	7.03	18.32	5.87
All with osc	4.91	4.28	9.60	7.87	18.65	5.93

Fractional uncertainties (%)

Alternate Models

T2K Measurements: Lepton $\mathbf{T2K}$ kinematics for 0, 1π States **NIW**

- Typically more pure, exclusive selections than near detector constraint samples.
 - Use to inform model choices, but don't measure parameters.

T2K Measurements: Lepton-Hadron Correlations

Correlations do not enter in near detector fit.

CONCLUSIONS

Conclusions

- T2K interaction model has evolved significantly throughout the lifetime of the experiment
 - Nuclear initial state, 2p2h, are usually biggest concerns. Significant freedom in assumptions.
 - Nucleon level inelastic models and flavor dependent effects also noticeable contributors.
- Working to reduce uncertainties through measurements with near detector, analyzing other data, improving models.

