

ANALYSIS AND

Systematic

UNCERTAINTY EXPERIENCE FROM MICROBOONE

Salvatore Davide Porzio on Behalf of the **MicroBooNe Collaboration** NNN18, Vancouver Nov 2, 2018

Run 3493 Event 41075, October 23rd, 2015

1) Fermilab's short baseline program: arXiv:1503.01520 [hep-ex]

MICROBOONE

MicroBooNE

NuMI v (off-a

BNB v lon-axis

- Liquid Argon Time Projection
 Chamber
- Short-Baseline Oscillation¹
 Experiment (470 m baseline), along with SBND and ICARUS
- Downstream of BNB and NuMI

- 87-ton active volume LAr
- Drift chamber with E-field at 273 V/cm
- Three wire planes (8192 wires):
 - 2 induction, 1 collection
 - 3 mm wire pitch
 - 3 mm plane spacing
- 32 8" Cryogenic PMTs

1) Fermilab's short baseline program: arXiv:1503.01520 [hep-ex]

MICROBOONE

See Brooke Russell talk tomorrow morning: Short Baseline Neutrino Experiments

Liquid Argon Time Projection Chamber

- Short-Baseline Oscillation¹
 Experiment (470 m baseline), along with SBND and ICARUS
- Downstream of BNB and NuMI

- 87-ton active volume LAr
- Drift chamber with E-field at 273 V/cm
- Three wire planes (8192 wires):
 - 2 induction, 1 collection
 - 3 mm wire pitch
 - 3 mm plane spacing
- 32 8" Cryogenic PMTs

Bubble chamber quality images + calorimetry and automated reconstruction!

Excellent resolution (~3mm)

MICROBOONE

<u>Science goals:</u>

- Resolve MiniBooNE low energy excess
- Study v-argon cross-sections
- •LArTPC R&D
- •Astrophysics and Exotica Physics

Run 3493 Event 41075, October 23rd, 2015

EXPERIENCE FROM PHYSICS ANALYSIS

Also providing great input to:

- Oscillation analysis
- Physics R&D

Invaluable experience towards understanding of LArTPC systematics!

Building up momentum thanks to our first **interaction** and **cross sections measurements**:

- Charged Particle Multiplicity
- v_{μ} CC inclusive
- CC π⁰
- CC N-p
- NuMICC v_e

v-Ar Multiplicity Distribution comparison to GENIE: https://arxiv.org/abs/1805.06887

CC π⁰Cross Section **MICROBONE-NOTE-1032-PUB**: http://microboone.fnal.gov/wp-content/uploads/MICROBOONE-NOTE-1032-PUB.pdf

APPROACH TO SYSTEMATICS

- Approach based on:
 - Simulating / re-weighting parameters
 - **Propagating effects** through the full chain

CC π⁰Cross Section **MICROBONE-NOTE-1032-PUB** http://microboone.fnal.gov/wp-content/uploads/MICROBOONE-NOTE-1032-PUB.pdf

- Use 1σ variations from central value, constrained by data when available or using an alternative underlying model.
- Many parameters have not been fully constrained yet by **internal or external measurements**.
- Very **high statistics**, need better understanding of systematics than previously ever needed.
- First iteration has **conservative estimates** on systematic uncertainties.
- But it will lead us to more precise constraints for the next iterations, providing us with invaluable experience.

Example from CC π° $\sigma_{syst} \sim 4 \cdot \sigma_{stat}$

SOURCE OF SYSTEMATICS

Main sources of uncertainties from:

- 1. Beam flux and POT counting
- 2. Cross section modelling
- 3. Detector response
- 4. Reconstruction

1. BEAM FLUX

- BNB: Using MiniBooNE / SciBooNE techniques
 - >15 years of experience running neutrino experiments in BNB.

Hadron production uncertainties

- Uncertainties in the production of secondary particles after proton collision
 - п+,п[.], К+, К[.],К⁰L
 - Based on fits to HARP data and Feynman scaling for cross-section measurements at different energies

Non-Hadron production uncertainties

- Mismodelling of horn current distribution
- Horn current miscalibration
- Pion and nucleon scattering cross sections on Be and Al

• Additional uncertainty on normalization from proton delivery, measured independently by two toroids.

BNB Flux Prediction Public Note **MICROBOONE-NOTE-1031-PUB**: <u>http://microboone.fnal.gov/wp-content/uploads/MICROBOONE-NOTE-1031-PUB.pdf</u>

Systematic	$ u_{\mu}/\% $	$ar{ u}_{\mu}/\%$	$ u_e / \% $	$ ar{ u}_e/\%$
Proton delivery	2.0	2.0	2.0	2.0
π^+	11.7	1.0	10.7	0.03
π^-	0.0	11.6	0.0	3.0
K^+	0.2	0.1	2.0	0.1
K^-	0.0	0.4	0.0	3.0
$-K_L^0$	0.0	0.3	2.3	21.4
Other	3.9	6.6	3.2	5.3
Total	12.5	13.5	11.7	22.6

• **NuMI:** Similar approach as BNB but taking care of off-axis angle. Following MINERVA and NOVA techniques.

2. CROSS SECTION MODELLING

- v-Ar Cross-sections difficult to predict.
 - Large nucleus, complicated nuclear effects
- First generation analyses using default **GENIE v2** with **empirical MEC**,
 - Using also alternative tune with Valencia QE/ MEC.
- Recent results from v_{μ} CC have shown **better agreement** with alternative tune.

2. CROSS SECTION MODELLING

- For the future planning transition to **GENIE v3** using either:
 - G18_10a
 - Theory-driven comprehensive model
 - G18_10i
 - Like G18_10a
 - Using z expansion in place of the dipole model for the QE axial form factor.
- State of the art generators.
- Expected to lead to further reduction in uncertainties

Model Element	G18_10a
Nuclear Model	Local Fermi Gas
Quasi-Elastic (CC)	Nieves
Quasi-Elastic (NC)	Empirical
Meson-exchange Currents	Nieves
Resonant	Berger-Sehgal
Coherent	Berger-Sehgal
FSI	hA2018

Strategy: CORRELATED UNIVERSES SIMULATION via reweighting

2. CROSS SECTION MODELLING

- Initial estimates varying parameters within standard 1σ estimates from GENIE manual.
- Developing in addition a re-weighting strategy for QE (RPA) and MEC based on differences between GENIE default and Valencia QE/MEC models.
 - Planning on importing MINERvA/NOvA RPA/MEC uncertainties treatment in next-generation analyses.

Progress in the implementation of GEANT4 uncertainty on hadron reinteraction with bulk Argon.

RPA: Random Phase Approximation (screening effect due to W polarization leading to cross-section suppression at low q⁰) **MEC**: Meson Exchange Current (interaction with correlated nucleon states populating multi-nucleon final states)

Y = 2.3

Ξ

X = 2.5 m

1-10.4m

Drift Time = X position

Electrons

3. DETECTOR RESPONSE

- Two main sub-**categories**:
 - A. **Propagation** of scintillation **light** and **electrons** through the detector and towards PMTs and wire plane
 - B. **Readout response** from *PMTs* and *wires*

Analysis Uncertainties	Inclusive	ccPi0
Cross section model uncertainties	3.63%	16%
Flux	11.93%	17%
Detector	18.90%	21%

• Largest contribution so far to total uncertainty.

Uncertainty strategy: UNCORRELATED UNIVERSES SIMULATION* via whole resimulation

*all data samples use identical generated interactions

Scintillation Light

 Assuming a constant field, when propagating toward the wire plane, ionization electrons go through multiple effects.

$$\frac{dE}{dX} \times \frac{1}{W} \times R \times L \times D \times C = \frac{dQ}{dX}$$

• Assuming a constant field, when propagating toward the wire plane, ionization electrons go through multiple effects.

• Assuming a constant field, when propagating toward the wire plane, ionization electrons go through multiple effects.

• Assuming a constant field, when propagating toward the wire plane, ionization electrons go through multiple effects.

RECOMBINATION

- Before transport, the electron can **recombine** with the **Ar+ ions**.
- Effect depends on **density of Ar+** and **e**⁻.
 - Affected by dE/dX and E-field strength.
- Using
 - Modified box model with parameters fit to ArgoNeuT data
 - **Birks model** fitted to **ICARUS** data for the systematic variations.

Current implementation:

Using alternative model externally constrained with other argon detectors measurements

Future implementation:

Internal constraints from ongoing MicroBooNE calibration measurements

ELECTRON ATTENUATION

- **Contaminants** in the liquid argon, such as **oxygen** and **water** can **capture** the drifting electron.
 - Causing a drift-distance dependent reduction of the size of the signal.
- Using **electron drift lifetime** to characterize attenuation.
- MicroBooNE design electron lifetime: 3ms
- We're currently well above 10ms.
- Simulating most extreme value allowed by run quality selection (10 ms, only ~10% of data at this purity) for systematic variations.

Infinite lifetime for default "Extreme case" simulation (IO ms) for uncertainty

MicroBooNE Attenuation measurements Public Note **MICROBOONE-NOTE-1026-PUB**: <u>http://microboone.fnal.gov/wp-content/uploads/MICROBOONE-NOTE-1026-PUB.pdf</u>

Future implementation:

• Ongoing MicroBooNE calibration measurements to disentangle it from other effects.

LONGITUDINAL & TRANSVERSE DIFFUSION

- Ionisation electrons travel due to electric field.
- During transport, the shape of the electron cloud is smeared.
 - Depending on **distance** to wire plane.
 - Separated in:
 - Longitudinal component (parallel to travel direction)
 - **Transverse** component (perpendicular to travel direction)

Current implementation: lo

- External constraints on argon for L
- T less studied in literature, using external measurements and theoretical extrapolation to MicroBooNE field strength

Possible future implementation:

- Internal constraints from ongoing MicroBooNE calibration measurements
- ³⁹Ar to disentangle L/T components

SPACE CHARGE

- Positive ions drift **105 times** slower than e- in LAr
- **Build-up of** Ar+ **ions** in steady-state configuration due to ionization **from cosmic rays** (3kHz).
- Leads to a **distortion of the electric field** within the detector.
 - **Displacement** in the reconstructed position of signal ionization electrons in LArTPC detectors (spatial distortion)
 - Variation in E-field strength (calorimetry distortion)
- Using a data-driven correction determined with throughgoing cosmic muons measured with an external muon telescope (MuCS).
- We built a map of **electric field** and obtain variations accordingly

MicroBooNE Space-Charge Effects Public Note **MICROBOONE-NOTE-1018-PUB**: <u>http://microboone.fnal.gov/wp-content/uploads/MICROBOONE-NOTE-1018-PUB.pdf</u>

Current implementation:

MicroBooNE data-driven calibration Calibration varied by 70% for systematic treatment

Possible future implementation:

Improving mapping by combining laser induced tracks + cosmic measurement

3B. READOUT RESPONSE

NOISE, RESPONSE FUNCTION AND SATURATED/MISCONFIGURED CHANNELS

- Using MicroBooNE measured noise spectrum in data.
- Determined list of channels associated with:
 - Cold ASICs circuits that have a **different gain** and **shaping time** than desired. (*misconfigured channels*).
 - Prone to have cold ASIC's circuits saturated as charge builds up on capacitors due to wire motion. (saturated channels)
- Determined uncertainty on **response functions** from MicroBooNE data via *narrower/wider* response function motivated by data measurements.

Current implementation:

- "Extreme case" simulation for saturated/ misconfigured channels, turning off channel list.
- Io constrained by MicroBooNE data measurements for PMT/Wire noise and response functions.

Future implementation:

filtering arXiv:1705.07341

MicroBooNE noise characterization and

- Ongoing MicroBooNE calibration measurements to improve constraints and capture an overall uncertainty
- Use of background data cosmics instead of CORSIKA simulated samples in next-generation analyses, is expected to reduce the impact of these uncertainties

3B. READOUT RESPONSE

DYNAMIC INDUCED CHARGE

- Electrons collected by wire induce charge also on neighbouring wires.
- Effect **observed in data**, but not currently modelled in default simulation.
 - Effect strongest for tracks travelling towards the wire plane.
- Simulation of dynamic induced charge (DIC) improves data/MC agreement.
- Determining the impact of switching DIC on/off and use as exaggerated effect for systematic variation.
- So far largest contributor to systematic uncertainty.

$oldsymbol{ u}_{\mu}$ CC incl.	$oldsymbol{ u}_{oldsymbol{\mu}}$ CC $oldsymbol{\pi}^{0}$
25%	31%
19%	21%
15%	≈15%
	ν _μ CC incl. 25% 19% 15%

Current implementation:

Updated vs. current simulation

Future implementation:

New simulation and reconstruction handling dynamic induced charge effects becomes default

4. RECONSTRUCTION DATA-DRIVEN RECONSTRUCTION EFFICIENCIES MicroBooNE

MicroBooNE reconstruction performance studies MICROBOONE-NOTE-1049-PUB: http://microboone.fnal.gov/wp-content/uploads/MICROBOONE-NOTE-1049-PUB.pdf

 Good reconstruction efficiency in the presence of cosmics.

• Using an external movable cosmic-ray telescope to measure datadriven efficiency of track reconstruction algorithm with cosmics.

- Overall **high reconstruction** efficiency: $(97.1 \pm 0.1 \text{ (stat)} \pm 1.4 \text{ (sys)})\%$
- Measured reconstruction efficiency from data agrees with the predicted efficiency in the simulation
 - **Confirmation** of our **simulation** and **reconstruction** chain. •

- Measured reconstruction efficiency from data agrees with the predicted efficiency in the simulation
 - Confirmation of our simulation and reconstruction chain.

THE PATH FORWARD

- MicroBooNE is the first stage LArTPC exposed by high intensity neutrino beam:
 - Large statistics, allowing us to measure v-Ar cross-sections precisely.
- First LArTPC on **surface**.
 - Many cosmic rays, measurements more challenging.
 - But also useful tools to **calibrate** and **understand** our TPC
- Many other analyses currently in progress:
 - Neutral-Current elastic scattering, charged-current 0π, 1µ+1p channel
 - Charged pion production, CC and NC neutral pion production, Coherent pion production
 - Kaon production
 - Exotic physics: Heavy Sterile Neutrinos & SuperNova v
- Many calibration analyses are maturing.
 - Allowing us to set better data-driven constraints on our systematics.
 - Getting ready for the **next generation of analysis**.

First LA.TD

THE PATH FORWARD

- MicroBooNE is the first stage LArTPC exposed by high intensity neutrino beam:
 - Large statistics, allowing us to measure v-Ar cross-sections precisely.

· Man Thank you for your attention

production, Coherent pion production

- Kaon production
- Exotic physics: Heavy Sterile Neutrinos & SuperNova v
- Many calibration analyses are maturing.
 - Allowing us to set better data-driven constraints on our systematics.
 - Getting ready for the **next generation of analysis**.

BACKUP

3. DETECTOR RESPONSE

	Uncertainty source	Present implementation	
U	Space charge	Modified MicroBooNE model	
agatic	Longitudinal/Transverse diffusion	l σ (external constraints)	Ongoing MicroBooNE
prop	Recombination	Alternative external models	calibration measurements
-Light	Electron attenuation	"Extreme case" simulation	uncertainties further
ctron	Outside-TPC light visibility	Conservative estimate	
Εļ	Light production yield	Updated vs. current simulation	New simulation becomes
	Dynamic Induced Charge	Updated vs. current simulation	default simulation
nse	Saturating channels	"Extreme case" simulation	Ongoing work on more
respo	Misconfigured channels	''Extreme case'' simulation	realistic treatment
dout	Wire response function	l σ (internal constraints from data)	Improvement in noise filtering and
Rea	Wire noise	l σ (internal constraints from data)	signal processing and using cosmic data as background (overlay) expected
	PMT PE noise	l σ (internal constraints from data)	to reduce impacts of these effects

4. RECONSTRUCTION

DATA-DRIVEN RECONSTRUCTION EFFICIENCIES

- The cosmic-ray telescope has been replace by a novel Cosmic Ray Tagger (CRT) system.
- Based on plastic scintillator modules and SiPMs readout.
- 85% coverage for through-going muons and excellent detection efficiency.
- Will allow to expand on the reconstruction studies and improve on them.

All unresponsive wires on all three planes (~10%)

All unresponsive wires with no redundancy (~3%)

CPM UNCERTAINTIES

• GENIE (short-track)

Observed multiplicity	$\frac{\Delta P_n}{P_n}$ Default	$\frac{\Delta P_n}{P_n}$ MEC	$\frac{\Delta P_n}{P_n}$ TEM
1	+7%	+7%	+8%
2	-11%	-12%	-12%
3	-25%	-25%	-25%
4	-33%	-36%	-39%
5	-44%	-48%	-

Observed multiplicity	$\frac{\Delta P_n}{P_n}$ Default	$\frac{\Delta P_n}{P_n}$ MEC	$\frac{\Delta P_n}{P_n}$ TEM	
1	-1%	-1%	-1%	
2	+2%	+2%	+2%	
3	+4%	+4%	+2%	
4	+7%	+7%	+7%	
5	+9%	+9%	_	

• GENIE (long-track)

Total
ισιαι

		Uncerta	inty Estimates			
Uncertainty Sources	mult=1	mult=2	mult=3	mult=4		
Data statistics	4%	10%	20%	99%		
MC statistics	2%	3%	7%	22%		
Short track efficiency	7%	11%	25%	33%		
Long track efficiency	1%	2%	4%	7%		
Background model systematics	2%	2%	0%	0%		
Flux shape systematics	0%	0.4%	0.2%	0.5%		
Electron lifetime systematics	0.5%	0.1%	6%	5%		

• Total (histogram)

CC П⁰ UNCERTAINTIES

• Flux	
• Cross-sections	_
• Detector	
MicroBooNE Preliminary 1.62e20 POT GENIE Default + Emp. MEC GENIE Alternative Flux (Arbitrary Scale) Genie Genie Ge	

Variation	1σ Uncertainty
$p+Be \rightarrow \pi^+$	11.5%
Beamline	10.2%
$\mathrm{p+Be}{\rightarrow}K^{+}$	1.4%
$p+Be \rightarrow K^-$	0.4%
$p+Be \rightarrow K^0$	0.4%
$\rm p+Be {\rightarrow} \pi^-$	0.3%
Total Uncertainty	15.5%

\mathbf{nty}

1σ Uncertainty					
12.9%					
12.5%					
11.0%					
21.1%					

CC INCLUSIVE UNCERTAINTIES

• Flux

Parameter	Description	Total Cross Section Relative Uncertainty					
Non-Hadron	Non-Hadron	5.34%					
K ⁻ Production	K^- production cross section	0.50%					
K^+ Production	K^+ production cross section	0.55%					
K^0 Production	K^0 production cross section	0.51%					
π^- Production	π^- production cross section	0.73%					
π^+ Production	π^+ production cross section	9.69%					
Total	Combined uncertainty	11.93%					

Total (+ cross-section)

Error Source	Method	Estimated Relative Uncertainty
Beam Flux	Estimated with multisim variations	12%
Cross Section Modeling	Estimated with multisim variations	4%
Detector Response	Estimated with unisim variations	19%
POT Counting	Toroids Resolution	2%
Cosmics (in-time)	Estimated from data-driven cosmic model	7%
Cosmics (out-of-time)	Estimated from off-beam statistics	1%
Beam Timing Jitter	Estimated from on- minus off-beam flashes	4%

Detector System- atic Sample	Description	Туре	Total Cross Section Relative Uncertainty [%]
Space Charge	A simple data-driven calibration is applied to the space charge simulation to make it better match measured space charge effects [29].	Modified Model	2.7
Induced Charge	Charge induction is simulated on a longer spatial range than in the default MC, so that more distant wires see the effect of drifting charge.	Alternate Model	15
Light Yield	An improved light production simulation model is used.	Alternate Model	3.7
Remove Chan- nels Prone to Saturating	Turning off channels that frequently become saturated as charge builds up on capacitors in the ASIC circuits, resulting in deadtime.	Alternate Model	2.1
Remove Miscon- figured Channels	Turning off the misconfigured channels asso- ciated with ASICs that have a different gain and shaping time than desired	Modified Model	2.1
Wire Response Function	The wire response functions used during de- convolution are stretched by 20% based on MicroBooNE data.	$\pm 1\sigma$	1.4
Longitudinal Dif- fusion	The amplitude of longitudinal diffusion is varied based on world data [32, 33].	$\pm 1\sigma$	1.4
Transverse Diffu- sion	The amplitude of transverse diffusion is var- ied based on world data [34, 35, 36].	$\pm 1\sigma$	2.1
Wire Noise	The amplitude of the wire noise model varied.	$\pm 1\sigma$	6.4
PE Noise	The single-PE noise of the PMTs is varied.	$\pm 1\sigma$	2.1
TPC Visibility	The light yield in the cryostat but outside the TPC is increased by 50%.	Alternate Model	4.3
Lifetime	The electron lifetime is reduced to 10 ms. (This condition affects only about $\sim 10\%$ of data taken with lower purity).	Alternate Model	1.2
Recombination	The Birks recombination model, with param- eters derived from ICARUS, is used instead of the default modified box model, with pa- rameters derived from Argoneut.	Alternate Model	1.3

Detector

Total combined relative uncertainty