

β -SRF – β -NMR Beamline Extension for SRF Studies **Commissioning and First Results**

E. Thoeng^{1,7}, S. Saminathan⁷, G. D. Morris⁷, P. Kolb⁷, R. M. L. McFadden⁷, Md. Asaduzzaman^{2,7}, T. Junginger^{2,7}, W. A. MacFarlane^{3,4,7}, R. F. Kiefl^{2,4,7}, V. L. Karner^{3,4}, D. Fujimoto², J. O. Ticknor³, R. Li⁷, M. Stachura^{5,7}, S. Dunsiger^{6,7}, R. Baartman⁷, R.E. Laxdal⁷

¹Dept. of Physics and Astronomy, University of British Columbia, 6224 Agricultural Rd., Vancouver, BC V6T1Z1, Canada ²Dept. of Physics and Astronomy, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada. ³Dept. of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada. ⁴Stewart Blusson Quantum Matter Institute, 2355 East Mall, Vancouver, BC V6T 1Z4, Canada. ⁵Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6. ⁶Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6. ⁷TRIUMF., 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada.

Abstract

TRIUMF β -NMR facility has been upgraded with a new spectrometer capable of surfaceparallel fields up to 200 mT. This new spectrometer allows for, at the nanometerscale, depth-resolved studies of the local electromagnetic fields near the surface of superconducting RF (SRF) materials, including conditions close to niobium's critical field. The β-NMR technique is first introduced, and the first results on SRF samples are shown. The new spectrometer has been successfully built, installed, and used for the first high-fields measurements on SRF samples.

Figure 1: Radioactive ion trajectory (in blue) at the new high-parallel-field beamline. Off-axis steering is required to compensate for high transverse magnetic fields and through the radiation shields (for a future He-3 cryostat).

β-NMR Facility & Technique

TRIUMF unique facilities: high-energy muons (μ SR) and low-energy radioactive ions (β -NMR) \rightarrow detect local fields via asymmetric emission of β -particles

Background & Motivation

- Nb SRF cavities \rightarrow high power/energy accelerators. SRF performance \rightarrow "Q vs <u>**B**</u>_{surf}" curve.
- Accelerating fields \uparrow , the surface magnetic fields $(\underline{B}_{surf})\uparrow$, and $Q \downarrow . \underline{B}_{surf} > 150 \text{ mT, the}$ <u>SRF cavity quenches</u> \rightarrow normal conducting.
- Modifying the nm-scale near surface (heat treatment, impurity doping) \rightarrow enhance SRF performance: higher Q & quench limit > 150

• Only β -NMR \rightarrow **nm-scale depth-resolution**.

Requires: radioactive beam (TRIUMF ISAC), laser facility (polarize nuclear spins), and **spectrometer** (deceleration/depth-control & measurements).

- Two spectrometers: low/parallel (0-24 mT) & fields (0.5-9 high/perpendicular Both \rightarrow down to ~ 4K.
- First measurements of SRF samples with β-NMR (24 mT): variations of local magnetic field at the surface layer w/ different heat-treatment. B(x)

Figure 3: The new high/parallel field spectrometer configuration post installation on the beamline extension (ca. July 2021).

β-SRF Beamline Extension

No facility exists for a nm-scale depthresolved local probe with fields > 30 mT (cf. LE- µSR, PSI, Switzerland). **Compensating** severe transverse deflection is much easier with heavier ions.

- The low/parallel spectrometer is extended with a new ~1 m high/parallel (up to 200 **<u>mT</u>**) beamline. Complex steering (compensate for high transverse *B*-fields) <u>& future He-3 cryostat</u> → new & improved ion-optics + diagnostics.
- Successfully <u>commissioned</u> in August

mT.

Ideal SRF probe: depth-resolved & local <u>fields sensitive + a high-parallel magnetic</u> <u>field (~200 mT).</u>

NO FACILITY AVAILABLE WORLDWIDE

 \rightarrow WE BUILD ONE

2021. First experiments at high-fields (~50 mT) for SRF samples done in **October 2021.**

Acknowledgement

Funding for this project was provided by the NSERC Research Grant. E.T. acknowledges financial support from NSERC IsoSiM program.

> **Discovery**, accelerated

Figure 2: Semi-log plot of the (normalized) mean local magnetic field vs. the mean depth for Nb samples with different heat treatments at 24 mT.