SFU SIMON FRASER UNIVERSITY

Electromagnetic Transition Rate Studies in ²⁸Mg

M.S. Martin¹, and K. Starosta²

¹Department of Physics, Simon Fraser University, Burnaby, BC, V5A 3S6, Canada ²Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 3S6, Canada

RUMF.

Island of Inversion at N=20 [1]

- Nucleons are placed into single particle energy shells analogous to atomic orbitals
- Shell model works very well near stability
- Nuclear models parametrized using data near stability
- Predicts shell gap at N=20 (observed)
- N=20 shell closure broken far from stability
- Structure of Mg isotopes leads to better understanding of shell evolution towards the island of inversion

Fusion Evaporation Reactions

$^{12}C(^{18}O, 2p)^{28}Mg$

- Beam of ¹⁸O impinges on ¹²C target and fuse together
 Fusion of ¹⁸O and ¹²C to form ³⁰Si
- **Evaporate protons in** $\sim 10^{-20}$ s to produce ²⁸Mg
- $\blacktriangleright~^{28}{\rm Mg}$ emits gamma rays decaying to the ground state in $\sim 10^{-12}~{\rm s}$

Pre-Experiment Test Runs

- ▶ RUN 1: Calibration of CsI ball (May 26 \rightarrow May 29)
- **b** Beam of $3(^{1}H)$ molecules are varying energies
- No TIGRESS data taken
- ► RUN 2: DAQ Shakedown (May $31 \rightarrow$ June 3)
- ► Beam of ¹⁸O on ¹⁹⁷Au-backed ¹²C target
- New firmeware developed for DAQ to store CsI waveforms
- Tested with both thin-target and with plunger itself

Production Run

- Took data from June 12 \rightarrow June 22
- Doppler Shift Attenuation Method run with lead-backed target
- ► Method sensitive to short-lived states ($t_{1/2} \lesssim 1$ ps)
- Represents the "zero-separation" measurement
- 11 plunger distances
- Ranging from 17 μ m through 400 μ m
- \sim 16 hours per distance to build statistics

Downstream Tigress energy (2p0a - rough - common PID gate on all TIP positions)

56168

1451

82.1

No complete theory of nuclei

Nuclear Theory [2]

- Many theoretical approaches reach different nuclei
- Attempt to calculate nuclear wavefunctions and observables from first principles
- Motivates the need for precise experimental measurements
- Test theoretical predictions
- Guide future efforts

- Beam nucleus impinges on target, undergoing fusion-evaporation
- Charged particles detected in CsI ball of TIP
- Residual nucleus expelled into space between target and stopper
- Either decays in flight or in stopper
- Decays in flight will be Doppler shifted depending on detector
- The comparison of counts in shifted and non-shifted gamma ray peaks provides information on lifetime
- Sensitive to states with $t_{1/2} \gtrsim 1$ ps

Detector Systems at TRIUMF and SFU

Coincidence measurement of charged particles with TIP (left) and TIGRESS (right) allow identification of specific reactions

- Able to isolate ²⁸Mg using rough PID gates
- Can see separation of shifted-to-stopped peak
 - Blue: Upstream
 - Green: Corona
 - Red: Downstream

Csl Ball: Particle ID

- ► First step in analysis is proper PID
- Requires determination of particle type

Electromagnetic Transition Rate Studies

 $\langle \psi_{ extsf{ground}} |$

Excited nuclei decay by emission of gamma rays

 $N(t) = N(0)e^{-t/\tau}$

- Can measure lifetime of a given transition
- Electromagnetic interaction well known
- Well understood E2 operator
- Can calculate B(E2): reduced transition strength
- Provides test of theoretical nuclear wavefunctions

 $\frac{1}{\tau} \propto \left| \left\langle \psi_{\text{ground}} \right| \text{E2} \left| \psi_{\text{excited}} \right\rangle \right|^2 \propto B(E2)$

²⁸Mg - Previous Transition Rate Measurements [3-5]

- ► Theoretical predictions of the B(E2) reduced transition strengths vary widely for both 4⁺ → 2⁺ and 2⁺ → 0⁺ transitions
- Previous measurement reached discrepancy in the

CsI ball of TIP used for charged particle detection

GEANT4 Simulation Framework

- Alphas (left) and protons (right) result in different waveforms
- Ratio of slow-to-fast risetime amplitudes used to determine particle type (below)

Calibrated Particle ID

Current Work: Reconstructing Events

- ► Need to isolate 28 Mg using 2p gate
- ► Only \sim 1 in 1000 events results in ²⁸Mg
- Requires particle tags for events
- PID produces particle tags for fragments
- Can reconstruct events using timestamps

resolved discrepancy in the 4⁺ → 2⁺ transition
Unable to precisely measure the 2⁺ → 0⁺ transition

► SA-NCSM only calculation in agreement with $4^+ \rightarrow 2^+$ but disagrees with previous $2^+ \rightarrow 0^+$ measurements

- Monte Carlo simulation framework for particle interactions
- Simulate nuclear reactions, geometries, and detection
- TIGRESS and CsI ball constructed and tested
- Can simulate and optimize experimental parameters

Data analysis can be done with the aid of GEANT4 simulations

► TIGRESS used for gamma ray

detection

- Simulate experiment with varying lifetimes
 Match experimental parameters as well as possible
- ► Use statistical methods to get a best fit lifetime
 ∑² minimization
- Maximum-likelihood

Events then sorted by particle content

Acknowledgements

I would like to thank Dr. K. Starosta and the rest of the SFU Nuclear Science Group for their support and assistance. I would also like to thank Dr. G. Hackman and Dr. J. Williams for valuable discussions on this work. Funding for this project was provided by the Natural Sciences and Engineering Research Council of Canada.

References

B.A. Brown. Physics **3** 104 (2010)
 H. Nam *et al.* J. Phys: Conf. Ser. **402** 012033 (2012)
 J. Williams *et al.* PRC **100** 014322 (2019)
 P. Fintz *et al.* Nucl. Phys. A **197** 423 (1972)
 T.R. Fisher *et al.* PRC **7** 1878 (1973)
 J. Williams. PhD Thesis. Simon Fraser University (2019)

NSERC

CRSNG

Nuclear Science Group | Simon Fraser University | Burnaby BC | Canada

2021 TRIUMF Science Week Poster Competit