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Abstract Noise Characterization
The Super Cryogenic Dark Matter Search (SuperCDMS) experiment uses cryogenic semi- Frequency information is used in our event analysis, in particular for our event energy estimator. Hence, we look at the noise as a function for frequency. The detector noise was characterized for
condutor detectors to look for evidence of dark matter interactions with Standard Model various bias voltages, using a 0 V detector bias as a baseline, as shown in Figure 4a.

matter. The next phase of the experiment is currently under construction at SNOLAB. In
July 2021, a new SuperCDMS detector was operated at CUTE, a low-background test fa-
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Pb around cryostat; top: internal Pb and - 133Ba Calibration Spectra and NTL Amplification

polyethylene above cryostat i —— i
Background: <7 events/keV/kg/day A retractable '33Ba calibration source is installed at CUTE, and was used for preliminary studies of the detector bias voltage amplification. — With NTL amplification

The easiest and most effective way of quantifying the amplification factor is by measuring the position of a peak. This is demonstrated

Cooling (~12 mK): dilution refrigerator with _ ~n _ _ _ ) _ IS
schematically in Figure 4, which shows the expected behaviour of a flat spectrum with a single gaussian peak under NTL amplification.

pulse tube cooler

Suspension system: system for vibration
mitigation (particularly pulse tube related)

Drywell with low activity Pb shield

Figure 2: Diagram of CUTE, from Ref. [1]. For this initial measurement we did not have all channels available, so we are only analyzing data from a single channel. Due to strong
position dependence of the signal, the energy resolution of a single channel is poor and the peaks in the Ba spectrum cannot be resolved.
However, inferences about the observed NTL amplification can be made by looking at the overall stretch of the spectrum (refer againto |~ e
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133Ba calibration spectra acquired with different V), are

SuperCDMS Work in Progiless shown in Figure 5(a). We see evidence for increasing NTL
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The main goal of CUTE Run 21 was to characterize the noise and behaviour
of a SuperCDMS SNOLAB Ge detector at HV. An important test was to

demonstrate that the HV is properly applied by observing NTL C
amplification. UTE
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