An Introduction to the Standard Model

Andrew Larkoski SLAC National Accelerator Lab

larkoski@slac.stanford.edu

ELEMENTARY PARTICLE PHYSICS

An Intuitive Introduction

ANDREW J. LARKOSKI

Courtesy Particle Fever LLC

Andrew LARKOSKI

OPAL Experiment, © CERN

M. Derrick et al. [HRS Collaboration],

"New results on the reaction $e^+e^- \rightarrow \mu^+\mu^-$ at $\sqrt{s} = 29$ GeV," Phys. Rev. D **31**, 2352 (1985)

 $\begin{array}{c} e^{-} & & & \\ \underset{p_{2}}{\overset{p_{2}}{\longrightarrow}} & & & & \\ & & & & & \\ e^{-} & p_{1} & & & & p_{4} \end{array}$ q p_3 q

D. Decamp *et al.* [ALEPH], "Measurement of electroweak parameters from Z decays into Fermion pairs," Z. Phys. C **48**, 365-392 (1990)

M. Tanabashi *et al.* [Particle Data Group], "Review of particle physics," Phys. Rev. D **98**, 030001 (2018)

 \overline{q} e^+ $\bigwedge^{\gamma} \bigvee \bigvee$ gq e^{-} time e^+ \overline{q} e^+ \overline{q} γ γ harpoond g+gq e^{-} q e^{\cdot} time time

g

 $\overbrace{\sqrt{}}^{\gamma}$

time

 e^+

 e^{-}

q

L3 Experiment, © CERN

K. Abe et al. [SLD Collaboration], Phys. Rev. D 55, 2533 (1997)

Electroweak

C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes and R. P. Hudson, "Experimental Test of Parity Conservation in β Decay," Phys. Rev. **105**, 1413-1414 (1957)

M. Tanabashi *et al.* [Particle Data Group], "Review of particle physics," Phys. Rev. D **98**, 030001 (2018)

R. Barate *et al.* [ALEPH Collaboration], "Study of the muon pair production at center-of-mass energies from 20 GeV to 136 GeV with the ALEPH detector," Phys. Lett. B **399**, 329 (1997)

R. Akers *et al.* [OPAL Collaboration], "Measurement of single photon production in e^+e^- collisions near the Z0 resonance," Z. Phys. C (1995)

S. Schael *et al.* [ALEPH and DELPHI and L3 and OPAL and LEP Electroweak Collaborations], "Electroweak measurements in electron positron collisions at W-boson-pair energies at LEP," Phys. Rept. **532**, 119 (2013) Higgs

$$p = (E, 0, 0, E)$$

Massless

Massive

CMS Experiment at the LHC, CERN Data recorded: 2012-May-13 20:08:14.621490 GMT Run/Event: 194108 / 564224000

S. Chatrchyan *et al.* [CMS Collaboration], "Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC," Phys. Lett. B **716** 30 (2012)

S. Chatrchyan *et al.* [CMS Collaboration], "Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC," Phys. Lett. B **716** 30 (2012)

G. Aad *et al.* [ATLAS Collaboration], "Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC," Phys. Lett. B **716** 1 (2012)

G. Aad *et al.* [ATLAS Collaboration], "Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC," Phys. Lett. B **716** 1 (2012)

ATLAS Experiment © CERN

G. Aad *et al.* [ATLAS], "Combined measurements of Higgs boson production and decay using up to 80 fb⁻¹ of proton-proton collision data at $\sqrt{s} = 13$ TeV collected with the ATLAS experiment," Phys. Rev. D **101**, no.1, 012002 (2020) 2022

Spin-0

Spin-2

G. Aad *et al.* [ATLAS Collaboration], "Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS detector," Eur. Phys. J. C **75**, no. 10, 476 (2015)

H⁰

$$J = 0$$

 $\begin{array}{ll} \mbox{Mass $m=125.25\pm0.17$ GeV} & (\mbox{S}=1.5) \\ \mbox{Full width $\Gamma=3.2^{+2.8}_{-2.2}$ MeV} & (\mbox{assumes equal} \\ & \mbox{on-shell and off-shell effective couplings}) \end{array}$

H^0 Signal Strengths in Different Channels

Combined Final States = 1.13 ± 0.06 $WW^* = 1.19 \pm 0.12$ $ZZ^* = 1.01 \pm 0.07$ $\gamma\gamma=1.10\pm0.07$ $c\overline{c}$ Final State = 37 \pm 20 $b\,\overline{b} = 0.98 \pm 0.12$ $\mu^+\mu^- = 1.19 \pm 0.34$ $\tau^+ \tau^- = 1.15^{+0.16}_{-0.15}$ $Z\gamma < 3.6, CL = 95\%$ $\gamma^*\gamma$ Final State = 1.5 \pm 0.5 $t \bar{t} H^0$ Production = 1.10 \pm 0.18 $t H^0$ production = 6 ± 4 H^0 Production Cross Section in pp Collisions at $\sqrt{s} = 13$ TeV = $56 \pm 4 \text{ pb}$