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DARK MATTER SEARCHES WITH ATOMIC, MOLECULAR, AND
NUCLEAR CLOCKS

Image: Ye group and Steven Burrows, JILA




HoOow OPTICAL ATOMIC CLOCK WORKS ?

BASIC IDEA: TUNE THE LASER TO THE FREQUENCY OF THE ATOMIC TRANSITION



HOW OPTICAL ATOMIC CLOCK WORKS ?
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An optical frequency synthesizer (optical frequency comb) is used to divide
the optical frequency down to countable microwave or radio frequency signals.

From: Poli et al. “Optical atomic clocks”, La rivista del Nuovo Cimento 36, 555 (2018) arXiv:1401.2378v2



htt w. nist.gov/pmI/div689/201>*_strontiu m.cfm

N —
JILA Sr clock
2x10-18

Table-top devices
Quite a few already constructed,
, based on different atoms
77 I Several clocks are usually in one place
- @ Will be made portable (prototypes exist)

Will continue to rapidly improve
Will be sent to space



APPLICATIONS OF ATOMIC CLOCKS
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SEARCH FOR PHYSICS BEYOND THE STANDARD MODEL WITH ATOMIC CLOCKS

dark matter
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Gravitational wave detection with
atomic clocks prp 94, 124043 (2016)




How to detect ultralight dark matter with clocks & cavities?

Oscillatory
DM effects

Least exotic

Dark matter field ¢(t) = ¢o cos (mgt + kp X T+ ... ¢ O
couples to electromagnetic interaction and “normal matter” M

It will make fundamental coupling constants and mass ratios oscillate

idea

Atomic, molecular, and nuclear energy levels will oscillate so clock frequencies
will oscillate. Strength of the effect depends on the transition.

Cavity length will oscillate.

Can be detected with monitoring ratios of clock frequencies over time (or clock/cavity). >
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Q-SEnSE
An NSF Quantum Leap Challenge Institute:

T [s] f=27/my [Hz] my [eV]
1076 1 MHz 4 x 1079
103 1 kHz 4 x 10712

1 1 4x1071°
1000 1 mHz 4 x 1018
10° 1070 4 x 10721

Asimina Arvanitaki, Junwu Huang, and Ken Van Tilburg, PRD 91, 015015 (2015)

Clocks are broadband
dark matter detectors but
can be made resonant




Variation of which fundamental constants can we probe
(or which dark matter couplings)
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Sensitivity of optical clocks to a-variation

, Enhancement factor
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Need: large K for at least one for the clocks
Best case: large K, and K, of opposite sign for clocks 1 and 2

Y=k, -k )L
Jat v o ot

| Test of o-variation
Frequency ratio

accuracy 10-18 100 1020
Easier to measure large effects!



Observable: ratio of two clock frequencies

Measure a ratio of Al* clock V(Hg+) K(Hg*)=-2.9 Sensitivity factors

frequency to Hg* clock ; N Not sensitive to a-variation,
frequency v (Al ) K(Al")=0.01 used as reference

1126 nm
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Picture credit: Jim Bergquist Science 319, 1808 (2008)



Clock measurement protocols for dark matter detection

Single clock ratio measurement: averaging over time At
Make N such measurements, preferably regularly spaced

) Al least one dark matter oscillation

"'-._“_d__tiring this time
"C =

int =

Loss of sensitivity if more than one dark
matter oscillation during this time

4-$Detection signal:

A peak with monochromatic
frequency f = 2m/my

In the discrete Fourier 7
transform of this time
series.

Solutions:

(1) Improve stability so shorter
probe times are practical to
use

(2) Use dynamic decoupling

-




JILA Sr clock-cavity comparison C. Kennedy et al., PRL 125, 201302 (2020)
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IMPROVE CLOCKS!
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Build different clocks

(1) Enhanced sensitivity to variation of fine-structure constants
(photon-DM coupling)
(2) Sensitive to variation of different fundamental constants



Scalar DM search with ultracold SrOH
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FROM ATOMIC TO NUCLEAR CLOCKS!

Clock based on

transitions in © Are

atoms fundamental
constants
constant?

What about
transitions in
nuclei?

M. S. Safronova, Annalen der Physik 531, 1800364 (2019)



OBVIOUS PROBLEM: TYPICAL NUCLEAR ENERGY LEVELS ARE IN MEV

Six orders of magnitude from ~few eV we can access by lasers!
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229Th NUCLEAR CLOCK
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European Research Council

Thorsten Schumm, TU Wein

Ekkehard Peik, PTB 0)
Peter Thirolf, LMU

Marianna Safronova, UD

Energy of the 22°Th nuclear clock transition:
Seiferle et al., Nature 573, 243 (2019)
T. Sikorsky et al., Phys. Rev. Lett. 125, 142503 (2020).

Review & ERC Synergy project plan:
E. Peik, T. Schumm, M. S. Safronova, A. Palffy, J. Weitenberg, and
P. G. Thirolf, Quantum Science and Technology 6, 034002 (2021).
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Th3*ion

Another possibility:

solid state nuclear
clock

What is different for the nuclear clock?

(1) Much higher sensitivity to the variation of o
(2) Nuclear clock is sensitive to other fundamental constants

(3) Nuclear clock is sensitive to coupling of dark matter to both
electromagnetic and the nuclear sector of the standard model



Th NUCLEAR CLOCK: EXCEPTIONAL SENSITIVITY TO NEW PHYSICS

Ground state Isomer
A

> © 8.19(10) eV

o S | Coulomb

S z energy Coulomb Sensitivity to o variation

Y D energy
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g MeV scale 819 eV

= ~10°

Q MeV

S,
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. . g . . . m
Much higher predicted sensitivity (K = 10000-100000) to the variation of o and A
OCD

Nuclear clock is sensitive to coupling of dark matter to the nuclear sector of the standard model.

5 years: prototype nuclear clocks, based on both solid state and trapped ion technologies
Variation of fundamental constant and dark matter searches competitive with present clock

10 years: 108 — 109 nuclear clock, 5 - 6 orders improvement in current clock dark matter limits
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Submitted to the Proceedings of the US Community Study
on the Future of Particle Physics (Snowmass 2021) arXiv:2203.14923

Snowmass 2021 White Paper
Axion Dark Matter

J. Jaeckel!, G. RybkaZ®, L. Winslow*, and the Wave-like Dark Matter Community *

Institut fuer theoretische Physik, Universitaet Heidelberg, Heidelberg, Germany
2University of Washington, Seattle, WA, USA
3Laboratory of Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA
4Updated Author List Under Construction



Pseudoscalar dark matter: QCD axion

Extremely well motivated dark matter candidate: QCD axion solves strong CP problem, parameter space is known

QCD LF) ~ é G@ generically break the CP symmetry 9<1071°

G is the gluon field strength tensor From non-observation

of neutron EDM

Strong CP problem Solution: Peccei-Quinn (PQ) mechanism

C: charge

P parity It minimally extends the SM with a new classically conserved global

symmetry, the PQ symmetry U(1)pq, Which is spontaneously broken at a

Strong interaction scale fa. QCD axion is the low-energy consequence.

could violate CP but
does not as of present

a -\ o .
vaAa
experimental accuracy .E =|—-0 —Gp Gpv
defined by limit on fa 81
neutron EDM. _ _
Ser::IUS fine-tuning  The axion dynamically relaxes the value of Oeff = (a)/f, — 6 to zero.
problem.

From chiral perturbation theory: m, = 5.691(51)ueV(10'°GeV/f,)
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Axions and APL searches
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J. Jaeckel, G. Rybka, L. Winslow, for
the Axion Prospects Collaboration.
“Axion Dark Matter”, arXiv:2203.14923



Pseudoscalar dark matter: axions and APL
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The resonant cavity haloscopes

ADMX: Axion Dark Matter eXperiment (ADMX)
HAYSTAC: The Haloscope At Yale Sensitive To Axion CDM
Tunable microwave cavity searchs for axions

Basic idea:

The electromagnetic
fields (one of the v)
created by an axion
(a) in a large static
magnetic field B
(second y) are
resonantly amplified in
a microwave cavity.

Signal: excess of power in the

cavity at the photon frequency.
Signal .
Resonant ———— | » Detector

cavity
Magnetic 11 Photon frequency
field (e axion mass)
Photon .
o
Axion © 3
IO ~—_ B a
Virtual >
photon Frequency

If this frequency matches the
resonant frequency of the cavity,
axion signal will be amplified.

Image from: Nature 590, 226 (2021)



Axions and APLs: future prospects
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Quantum enhanced axion dark matter search

« The size of a simple haloscope cavity must scale with the axion Compton wavelength 1/m..

« The scanrate scalesas R~v.*® so scanning is too slow for higher masses (20,000 years).

« One solution: compensate for this using quantum metrology techniques, decreasing
the noise beyond the standard quantum limit.

(@) measurement

] noise
Fol aremnremmr

>
#
CaVviIlty O _ ]
= 3 3 — cavity noise
A

axion signal

Figure credits: Konrad Lenhert & PRX Quantum 2, 040350 (2021).



Quantum enhanced axion dark matter search

The size of a simple haloscope cavity must scale with the axion Compton wavelength 1/m,.
The scan rate scales as R~v.'*® so scanning is too slow for higher masses (20,000 years).

a

One solution: compensate for this using quantum metrology techniques, decreasing
the noise beyond the standard quantum limit.

(@) measurement (b)

1 noise
>‘m
e
> #
(qV)

U #

— cavity noise

axion signal W

visibility bandwidth

PSD

Figures: PRX Quantum 2, 040350 (2021).



Quantum enhanced axion dark matter search

(@) measurement (b)

=1 noise

>

visibility bandwidth
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— cavity noise
axion signal

With quantum enhancement: version 1

Figures: PRX Quantum 2, 040350 (2021).



Quantum enhanced axion dark matter search

« The size of a simple haloscope cavity must scale with the axion Compton wavelength 1/m..

« The scanrate scalesas R~v.*® so scanning is too slow for higher masses (20,000 years).

« One solution: compensate for this using quantum metrology techniques, decreasing
the noise beyond the standard quantum limit.

Quantum-enhanced measurement techniques can widen
the visibility bandwidth by increasing noise that originates in the
cavity (along with any signal present) relative to noise associated

with measurement.

Two-fold speed in QCD axion search rate from squeezing was
demonstrated in 2021 by coupling the HAYSTAC cavity
to the squeezed-state receiver (Backes et al., Nature 590, 238).

Quantum enhancement was limited by the loss associated with
Wa transporting microwave squeezed states through a cascaded
— microwave network.
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Quantum enhanced axion dark matter search

(@) measurement (b)

=1 noise

>

visibility bandwidth

|

PSD

— cavity noise
axion signal

With quantum

Noiseless
enhancement: amplification
. cannot be done
version 2 in strong

magnetic field




More enhancement from embedded entanglement

Proposal for 15 fold speedup

Circumvent the loss using two cavities with an embedded three-wave mixing element that
simultaneously preparing the cavities in entangled states and swapping those states.

Widen the visibility bandwidth by amplifying the cavity noise and axion signal together in a single
quadrature relative to measurement noise.

3WM
TL (50 cm)
K;/2m > 100 kHz /

: o

("¢ state swap (g): wg — wy
- : two mode squeezing (h): wg + wy
axion [s Km
o
: 8]
Wy Wp . .
Readout cavity is outside
- —_— -
of magnetic field
cavity (tunable) readout

“Cavity Entanglement and State Swapping to Accelerate the Search for Axion Dark
Matter,” K. Wurtz, et al., KWL, PRX Quantum 2, 040350 (2021).



The Cosmic Axion Spin Precession Experiment
CASPEr-e

(a)

detection
circuit
coupled

to sensor
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The CASPEr experimental schematic (a) and CASPEr-e projected sensitivity (b)
Spin states of a nuclear spin ensemble are split by the applied bias field Bo.

When this splitting is resonant with the axion-like dark matter Compton frequency w., the ensemble
magnetization M is tilted and undergoes precession that is detected by an inductively-coupled sensor.



NEXT DECADE OF SPACE RESEARCH

What quantum technologies will be sent to space? @ esa

What new physics can one search for in space better then on Earth?

Ongoing NASA Decadal Survey: Biological and Physical Sciences in Space
https://science.nasa.gov/biological-physical/decadal-survey

Europe: Community workshop on cold atoms in space (September 2021)
https://indico.cern.ch/event/1064855/

Goal: develop a community roadmap and milestones to demonstrate the readiness of cold
atom technologies in space, as proposed in the Voyage 2050 recommendations.

Cold Atoms in Space: Community Workshop Summary and Proposed Road-Map,
Alonso et al., arXiv:2201.07789

Image credits: NASA, ESA



Why to search for new physics in space?

Many orders of magnitude improvements or principally different experiments are possible

« Effects may be screened on Earth (DM with quadratic coupling to SM, dark energy)

« Variable gravitational potential: elliptical orbits around the Earth and the Sun

« Many other opportunities for tests of gravity, dark energy searches

« Constrain DM distribution in the Solar system

 Ability to link optical Earth-bound clocks

« Long baseline (for gravitational wave detection), moon & asteroids as test masses

« Different range of gravitational wave frequencies accessible & no seismic noise

« Being able to direct access of all spatial components of the basic coefficients for Lorentz
and CPT violation, matter-gravity coupling, different boosts than available on Earth

« Microgravity

38



FUNDAMENTAL PHYSICS WITH A STATE-OF-THE-ART
OPTICAL CLOCK IN SPACE

Andrei Derevianko, Kurt Gibble, Leo Hollberg, Nathan R. Newbury, Chris Oates,
Marianna S. Safronova, Laura C. Sinclair, Nan Yu, arXiv:2112.10817

Av AU
= (1 + CZ) =
. Optical clocks on earth
SAN
| B 22,800 km
g
Optical link
Optical clock

In space
Schematic of the proposed mission to test Fundamental physics with an Optical Clock Orbiting in Space (FOCOS)



Fundamental Physics with a State-of-the-Art Optical Clock in Space
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Image credit: NASA's Goddard Space Flight Center/Mary P. Hrybyk-Keith

National Aeronautics and Space Administration

- PARKER SOLAR PROBE

NASA’s Parker Solar Probe has now flown through the Sun’s upper atmosphere — the coro

Parker
Solar Probe JOURNEY THROUGH THE SUN’'S ATMOSPHERE .
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SpaceQ -- Direct Detection of Ultralight Dark Matter with
Space Quantum Sensors

Yu-Dai Tsai, Joshua Eby, Marianna S. Safronova, arXiv:2112.07674

We propose a clock-comparison satellite mission with two clocks
onboard, to the inner reaches of the solar system (0.1 AU).

Science goals:

o Bl R R R

e Search for the dark matter halo bound to the Sun =’

—
o
—
w
ok

» Probe natural relaxion (solves hierarchy problem

and can be DM) parameter space

» Look for the spatial variation of the fundamental 3 R A BTASERY, R
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constants associated with a change in the b e i e ool skl -3
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ESTIMATED SENSITIVITY REACHES FOR DARK MATTER BOUND TO THE SUN
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The blue, red, and black denote
sensitivity for probes at the
distance of 0.1 AU,

probes at the orbit of Mercury, and
for terrestrial clocks, respectively



Moon, planets, asteroids & quantum sensors

Looking for ideas: Moon, planets and asteroids for new physics
searches with quantum sensors

« Moon: low seismic noise, free permanent cryogenic & vacuum
environment

« Can QS on the Moon further improve Lunar Laser Ranging?

« How can quantum sensors can aid navigation in missions to planets
and asteroids?

« Can we use quantum sensors to track asteroids?
« How to we use clocks to monitor distance between asteroids?

OSIRIS-Rex: NASA missio
to asteroid Bennu
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Asteroid astrometry as a fifth-force and ultralight dark sector probe,
Yu-Dai Tsai, Youjia Wu, Sunny Vagnozzi, Luca Visinelli,
arXiv:2107.04038

Asteroids for uHz gravitational-wave detection, Michael A. Fedderke,
Peter W. Graham, Surjeet Rajendran, Phys. Rev. D 105, 103018
(2022)
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ADVANCED
RESEARCH ARTICLE QUANTUM
TECHNOIOGIES
www.advquantumtech.com

Transportable Strontium Optical Lattice Clocks Operated
Outside Laboratory at the Level of 1078 Uncertainty

Adv. Quantum Technol. 2021, 4, 2100015
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Figure 1. A pair of Sr optical lattice clocks placed at RIKEN laboratory.



New ideas in gravitational wave detection
with atomic quantum sensors




Sources

Wave period

Wave
frequency

Detectors

Radio pulsar timing arrays

|

Extreme-mass-
ratio inspirals

10
Milliseconds

Space-based interferometers

M. Bailes, et al., Nature Reviews Physics 3, 344 (2021)



Figure is from Peter Graham’s talk at KITP 2021: https://online.kitp.ucsb.edu/online/novel-oc21/
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Atom interferometers: from 10 meters to 100 meters to 1km to space

MIGA: Terrestrial detector using atom .
AION: Terrestrial shaft detector

interferometer at 0(100m) LASER . .
(France) HUTCH using atom interferometer at 10m
— 0(100m) planned
(UK)
ATOM
SOURCE
ZIGA: Terrestrial detector for large scale atomic
interferometers, gyros and clocks at O(100m)
- ATOM
(China) SOURCE
MAGIS: Terrestrial shaft detector
using atom interferometer at
ATOM 0(100m)
SOURCE (US)

Planned network operation

Figures are from : talk by Oliver Buchmueller, Community Workshop on Cold Atoms in Space,https://indico.cern.ch/event/1064855/timetable/



2022

SOLVING PHYSICS PROBLEMS OF 1922 GAVE US QUANTUM
MECHANICS — A FOUNDATION OF MODERN TECHNOLOGY.

WHAT NEW WONDERS
DISCOVERY OF NEW
PHYSICS WILL BRING?
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