Calorimetry

Overview

- > Calorimeter Basics
- > New Developments
 - Dual Readout
 - High Granularity
 - Timing

Why Calorimeters?

Energy measurement via total absorption of the incoming particles

- Principle of operation:
 - Incoming particle interacts with calorimeter material -> particle shower
 - Shower composition and dimension depend on particle type and detector material
 - Energy deposited in form of heat, ionization, excitation of atoms (e.g. scintillation),
 Cherenkov light...
 - Different calorimeter types use different kinds of these signals to measure total energy
- Basic assumption: Signal (S) is proportional to incoming energy (E)
- Calorimeters measure charged and neutral particles
- Calorimeters have a high rate capability and are fast and can therefore recognize and select interesting events in real time -> Trigger

Electromagnetic showers

- electromagnetic showers are simple:
 - electrons and positrons radiate photons
 - photons produce electronpositron pairs
- > ~one step per radiation length X₀
- > in each step
 - number of particles *2
 - mean particle energy *1/2
- > at depth t (in X₀):
 - mean particle energy E₀*2^{-t}
- shower maximum t_{max} is reached when mean energy reaches critical energy E_C: t_{max}=log₂(E₀/E_C)
- logarithmic increase of shower depth with energy

JV217.c

- radial development is described by Moliére radius
 - a cylinder with radius 1 R_M contains ~90% of the total energy

ECAL design

- consequences for ECAL design
 - want dense absorber material with small X₀ for compact showers
 - need sensitive material to detect particles in shower
 - granularity for ECAL energy resolution not so important, but relevant for position resolution, shower direction, 2-particle separation, ...

homogeneous calorimeter: sensitive material as absorber

- advantages
 - very good energy resolution
- disadvantages
 - limited granularity
 - expensive

sampling calorimeter: absorber interleaved with sensitive material

- advantages
 - compact
 - can be cheap
- disadvantages
 - limited energy resolution because of sampling fluctuations

Examples of ECAL energy resolutions

Technology (Experiment)	Depth	Energy resolution	Date
NaI(Tl) (Crystal Ball)	$20X_{0}$	$2.7\%/\mathrm{E}^{1/4}$	1983
$\mathrm{Bi_4Ge_3O_{12}}$ (BGO) (L3)	$22X_0$	$2\%/\sqrt{E} \oplus 0.7\%$	1993
CsI (KTeV)	$27X_0$	$2\%/\sqrt{E} \oplus 0.45\%$	1996
CsI(Tl) (BaBar)	$16-18X_0$	$2.3\%/E^{1/4} \oplus 1.4\%$	1999
CsI(Tl) (BELLE)	$16X_0$	1.7% for $E_{\gamma} > 3.5$ GeV	1998
PbWO ₄ (PWO) (CMS)	$25X_0$	$3\%/\sqrt{E} \oplus 0.5\% \oplus 0.2/E$	1997
Lead glass (OPAL)	$20.5X_0$	$5\%/\sqrt{E}$	1990
Liquid Kr (NA48)	$27X_{0}$	$3.2\%/\sqrt{E} \oplus 0.42\% \oplus 0.09/E$	1998
Scintillator/depleted U (ZEUS)	20-30X ₀	$18\%/\sqrt{E}$	1988
Scintillator/Pb (CDF)	$18X_{0}$	$13.5\%/\sqrt{E}$	1988
Scintillator fiber/Pb spaghetti (KLOE)	$15X_{0}$	$5.7\%/\sqrt{E} \oplus 0.6\%$	1995
Liquid Ar/Pb (NA31)	$27X_{0}$	$7.5\%/\sqrt{E} \oplus 0.5\% \oplus 0.1/E$	1988
Liquid Ar/Pb (SLD)	$21X_0$	$8\%/\sqrt{E}$	1993
Liquid Ar/Pb (H1)	$20 – 30X_0$	$12\%/\sqrt{E}\oplus 1\%$	1998
Liquid Ar/depl. U (DØ)	$20.5X_{0}$	$16\%/\sqrt{E} \oplus 0.3\% \oplus 0.3/E$	1993
Liquid Ar/Pb accordion (ATLAS)	$25X_0$	$10\%/\sqrt{E} \oplus 0.4\% \oplus 0.3/E$	1996

from PDG

homogeneous

sampling

Contributions to energy resolutions

usually, energy resolution of a calorimeter can be parameterised as

$$\frac{\sigma(E)}{E} = \frac{a}{\sqrt{E}} \oplus b \oplus \frac{c}{E}$$

- > stochastic term
 - caused by fluctuations in the number of measured particles (intrinsic fluctuations, sampling fluctuations, statistical effects in detection, ...)
- calibration term
 - caused mainly by non-uniformities, e.g. by calibration
- noise term
 - everything contributing energy independent of initial particle energy,
 e.g. noise
- size and relevance of these contributions are highly dependent on choice of calorimeter materials
- real calorimeters often have worsening of resolutions at high energies (containment)

CMS homogeneous crystal ECAL:

$$\frac{\sigma(E)}{E} = \frac{3\%}{\sqrt{E}} \oplus 0.5\% \oplus \frac{0.2 \ GeV}{E}$$

ATLAS lead LAr accordion calorimeter:

$$\frac{\sigma(E)}{E} = \frac{10\%}{\sqrt{E}} \oplus 0.4\% \oplus \frac{0.3 \ GeV}{E}$$

> so CMS should do much better in mass resolution for H $\rightarrow \gamma\gamma$, does it?

> CMS is not that much better than ATLAS! Why?

- > CMS is not that much better than ATLAS! Why?
- energy resolution is not the only relevant quantity! ATLAS has finer granularity and therefore better position and angular resolution

> in addition: lots of material in front of calorimeters, so many photons convert to electron-positron pairs before reaching ECAL

Hadronic showers

- hadronic showers
 - much less well understood, and much larger intrinsic variation
 - many processes: quasi-elastic scattering ... nuclear break up
 - usually have electromagnetic sub-shower
- relevant length scale: interaction length λ_{Int}
- similar to EM showers: logarithmic increase of shower depth with energy

Examples of HCAL energy resolutions

Experiment	technology	energy resolution
ALEPH	Fe / streamer tubes	85%/√E
ZEUS	U / scintillator	35%/√E ⊕ 2%
H1	Fe / liquid argon	51%/√E ⊕ 1.6% ⊕ 0.9 GeV/E
D0	U / liquid argon	41%/√E ⊕ 3.2% ⊕ 1.4 GeV/E
ATLAS (design)	Fe / scintilator	50%/√E ⊕ 3%
CMS (design)	brass / scintillator	100%/√E ⊕ 4.5%

All hadronic calorimeters are sampling calorimeters!

Why is Zeus so good?

Hadronic showers: energy resolution and compensation

- hadronic showers contain a large amount of "invisible" energy: nuclear binding energy, slow neutrons, neutrinos, ...
- calorimeter response to an electron and a pion of the same energy is usually not the same
 - $e/\pi > 1$: under-compensating (most calorimeters)
 - $e/\pi = 1$: compensating
 - e/π < 1: over-compensating

$$\pi = f_{EM} e + (1 - f_{EM}) h$$

e: response to EM shower

h: (hypothetical) response to purely HAD shower

Hadronic showers: energy resolution and compensation

- > Why does $e/\pi \neq 1$ have an influence on the resolution?
 - the fraction of energy in the electromagnetic sub-shower (f_{EM}) varies from shower to shower
 - also the fraction of invisible energy varies from shower to shower
- hadronic energy resolution much worse than electromagnetic!
- In addition: the average f_{EM} increases with energy -> non-linearity

Hadronic showers: how to reach compensation?

Hardware

- > design HCAL such that $e/\pi = 1$
 - Enhance response to HAD shower fraction (h)
 - Reduce response to EM shower fraction (e)
- > challenges:
 - often deteriorates EM resolution

proper choice of active and passive thicknesses gives compensation

ZEUS: Highly-segmented, uranium scintillator sandwich calorimeter r/o by 12,000 photomultiplier tubes

Hadronic showers: how to reach compensation?

Hardware

- > design your HCAL such that $e/\pi = 1$
 - Enhance response to HAD shower fraction (h)
 - Reduce response to EM shower fraction (e)
- > challenges:
 - often deteriorates EM resolution

Software

- correct energy measurement depending on f_{EM}
- > challenges:
 - need to identify EM subshower and weight HAD and EM part differently
 - See later:
 - Dual readout
 - High granularity

New developments

- Dual readout
- High granularity
 - Motivation
 - Testbeam prototypes and measurements
 - Engineering prototypes
 - High granularity beyond electron-positron colliders
 - High granularity & timing
- Radiation hardness
 - Not really covered here
 - Very important for future hadron colliders (FCChh)
 - For highest fluence, mainly two technologies suitable
 - Liguid noble gas (Liquid Argon)
 - Silicon sensors

Dual Readout: Idea

Measure f_{EM} for each shower directly by using scintillation & Cherenkov radiation

- Scintillation (S) is produced by all particles in a shower
- Cherenkov (C) radiation is produced only by "fast" particles (faster than the speed of light in the medium)
 - Mainly the electrons & positrons in the EM (sub-)shower
- By measuring both S and C for a hadronic shower, get a handle on f_{EM}
- Expectation: stochastic term of better than 30% should be reachable for single hadrons

Plots from "DUAL-READOUT CALORIMETRY", arXiv:1712.05494

Dual Readout: Implementation

Several ideas have been explored

- Spaghetti fiber calorimeters with two sets of fibers (DREAM, RD52)
 - Scintillating fibers to detect S
 - Clear fibers (quartz or plastic) to detect C
- Distinguish S and C by their spectral and/or timing characteristic
 - C is (quasi-)instantaneous, small wave length (UV)
 - S is governed by scintillator characteristics
- Combination with high granularity: dual readout tiles

Fiber pattern RD52

Dual Readout: Experimental challenge

- Yield of Cherenkov light is usually low (much less than scintillation)
- In order to demonstrate the performance, need to build a large prototype with very small leakage
 - Both lateral and longitudinal
- So far, ~30% / sqrt(E) has been shown for hadrons

Motivation

- Highly granular calorimeter concepts originally developed for future electron-positron colliders
- main interest: measurement of jet energies in EW processes

Physics	Measured	Critical	Physical	Required
Process	Quantity	System	Magnitude	Performance
$Zhh \ Zh o qar{q}bar{b} \ Zh o ZWW^* \ u \overline{ u}W^+W^-$	Triple Higgs coupling Higgs mass $B(h o WW^*)$ $\sigma(e^+e^- o u\overline{ u}W^+W^-)$	Tracker and Calorimeter	Jet Energy Resolution $\Delta E/E$	3% to 4%

- other interesting processes with jets: everything with t quarks, SUSY, ...
- don't forget single particles:
 - tau identification relies on ECAL
 - low energy muons don't reach the muon system \rightarrow identify in calo!

Why 3-4% jet energy resolution?

> goal: distinguish the decays $W \rightarrow jet \ jet$ and $Z \rightarrow jet \ jet$ by their reconstructed mass

- > required resolution: $\sigma(E_{jet})/E_{jet} \approx 3-4\%$
- > interesting jet energy range: E_{jet} ≈ 40 to 500 GeV
- not reachable with LEP (and existing collider) detectors!

Particle Flow Algorithm

> Idea:

for each individual particle in a jet, use the detector part with the best energy resolution

from: M.A. Thomson, Nucl.Instrum.Meth. A611 (2009) 25

- "typical" jet:
 - ~ 62% charged particles
 - ~ 27% photons
 - ~ 10% neutral hadrons
 - ~ 1% neutrinos

Particle Flow Algorithm

> Idea:

for each individual particle in a jet, use the detector part with the best energy resolution

from: M.A. Thomson, Nucl.Instrum.Meth. A611 (2009) 25

- "typical" jet:
 - ~ 62% charged particles
 - ~ 27% photons
 - ~ 10% neutral hadrons
 - ~ 1% neutrinos

tracking EM calorimeter HAD calorimeter

Particle Flow Algorithm

> Idea:

for each individual particle in a jet, use the detector part with the best energy resolution

from: M.A. Thomson, Nucl.Instrum.Meth. A611 (2009) 25

- "typical" jet:
 - ~ 62% charged particles
 - ~ 27% photons
 - ~ 10% neutral hadrons
 - ~ 1% neutrinos

tracking EM calorimeter HAD calorimeter

$$(\sigma_{jet})^2$$
 $\approx 0.62 (\sigma_{tracks})^2$
 $+ 0.27 (\sigma_{EMCalo})^2$
 $+ 0.10 (\sigma_{HADCalo})^2$
 $+ (\sigma_{loss})^2 + (\sigma_{confusion})^2$

Jet Energy Resolution with PFA

realistic ILC calorimeter (ILD)

PFA

"ideal" traditional HAD calorimeter

"Confusion": wrong association between tracks and calorimeter clusters

- > PFA resolution is clearly better than calorimeter alone
- > at high jet energy: correct association between tracks and calorimeter clusters is very important ⇒ calorimeter with very high granularity
- > at low jet energy: dominated by "classical" calorimeter energy resolution ⇒ hadronic calorimeter with decent energy resolution

Particle Flow at Work

- Particle Flow (or similar) algorithms have been used for jet reconstruction in the past by several experiments (ALEPH, CDF, H1, ZEUS, ...)
- improvement in resolution relative to pure calorimeter algorithms depends a lot on the detector itself
 - CMS: HCAL with modest energy resolution → large gain
 - ATLAS: HCAL with good energy resolution, magnet coil between tracker and calorimeter → small gain
- none of these detectors were built for Particle Flow!

Particle Flow Detector

What featires should a detector possess so that it is optimized for Particle Flow?

- need good separation of particles entering the calorimeter
- → large detector radius and length
- → large magnetic field to separate charged from neutral particles
- need compact showers to minimize overlap
- → calorimeters with small Molière radius
- need minimal amount of dead material between tracker and calorimeter
- → calorimeter inside magnet coil
- need detailed information about shower position and shape
- → calorimeter with very high granularity

Calorimeter Technologies for Linear Collider detectors

Calorimeter Readout Concepts

digital CAL: count number of hit pixels (off/on)

Calorimeter Readout Concepts

- digital CAL: count number of hit pixels (off/on)
- semi-digital CAL: additional information about number of particles within one pixel by using 3 thresholds (off/standard/large/very large)
- analog CAL: sum up signals in (larger) cells

for the hadronic calorimeter, all 3 concepts are studied and have shown their physics potential with "physics prototypes"

Electromagnetic Calorimeter: Active Material

Silicon

1024 pixel

Silicon

256 pixel

Scintillator

Highly Granular HCAL Concepts

	analog	semi-digital	digital
granularity	3*3 cm ²	1*1 cm ²	1*1 cm ²
technology	scintillator tiles	RPCs (or µMegas)	RPCs (or GEMs)

Measurements in Beam Tests

- In test beams you get only single particles, no jets
 ⇒ direct measurement of the jet energy resolution not possible
- Nevertheless, measurements in beam tests provide important information:
 - hands-on experience with (a small version of) the detector
 - calibration of the detector
 - energy resolution for single particles is one important ingredient in the jet energy resolution
 - comparison of hadron showers in data and simulation (Geant4)
 - ⇒ studies of the substructure of showers
 - ⇒ tests of the Particle Flow Algorithms with overlayed showers
 - ⇒ realistic jet energy resolution in the simulation

Highly Granular ECALs

electron in silicon ECAL prototype with hexagonal sensors (6 X₀)

pion in silicon ECAL prototype with square sensors

Page 37

How small should the cells be?

1*1 cm² HCAL cell size

3*3 cm² HCAL cell size

From physics prototypes to engineering prototypes

- capabilities of a highly granular calorimeters successfully demonstrated with the "physics prototypes"
- but these were designed for beam tests, not really scalable to a collider detector

- goal for the "engineering prototype": develop, build and test a prototype scalable to the full collider detector layout
 - integration of electronics into layers
 - realistic infrastructure
 - easy mass assembly

Analog HCAL Engineering Design

- highly granular scintillator SiPM-on-tile hadron calorimeter, 3*3 cm² scintillator tiles
- fully integrated design
 - front-end electronics, readout
 - voltage supply, LED system for calibration
 - no cooling within active layers
- scalable to full detector (~8 million channels)

Silicon ECAL + Analog HCAL in Testbeam

Have just finished 2 weeks of testbeam at the CERN SPS with combined silicon ECAL + analog HCAL engineering prototypes

High Granularity beyond electronpositron colliders

- recently also LHC detector collaborations adopted the idea of highly granular calorimeters
- granularity driven by pile-up mitigation, NOT particle flow

Digital ECAL: Pixel Calorimeter Prototype

- >R&D for ALICE FoCal upgrade
- >full MAPS prototype, 24 layers
 - 3mm W
 - 1mm sensor layer
 - 120µm sensor (2x2 chips) + PCB, glue, air, ...
- >39 M pixels in 4x4x10 cm³!

FCC-hh: LAr with high(er) granularity

- Compared to ATLAS, FCC-hh Calo needs finer longitudinal and lateral granularity
 - Optimized for particle flow
 - 8 longitudinal compartments, fine lateral granularity
- Noble liquid (LAr) as active material
 - Radiation hardness, linearity, uniformity, stability
- > EM Barrel: Absorbers 50° inclined with respect to radial direction
 - Sampling fraction changes with depth: ≈ 1/7 to 1/4
 - Longitudinal segmentation essential to be able to correct

Electromagnetic calorimeter barrel

- 2 mm absorber plates inclined by 50° angle;
- LAr gap increases with radius:
 1.15 mm-3.09 mm;
- 8 longitudinal layers (first one without lead as a presampler);
- $\Delta \eta = 0.01 \ (0.0025 \text{ in 2nd layer});$
- $\Delta \varphi = 0.009$;

Granularity and Timing for Background (Pileup) Rejection

- CMS: expect up to 200 pileup events at HL-LHC
 - VBF (H→gg) event with one photon and one VBF jet in the same quadrant

Plots show cells with Q > 12fC (~3.5 MIPs @300 μ m - threshold for timing measurement) projected to the front face of the endcap calorimeter. Concept: identify high-energy clusters, then make timing cut to retain hits of interest

CMS High Granularity Calorimeter Endcap Upgrade

CMS High Granularity CALorimeter

Active Elements:

- Hexagonal modules based on Si sensors in CE-E and high-radiation regions of CE-H
- "Cassettes": multiple modules mounted on cooling plates with electronics and absorbers
- Scintillating tiles with SiPM readout in low-radiation regions of CE-H

Key Parameters:

Coverage: $1.5 < |\eta| < 3.0$ Full system maintained at -30°C ~620m² Si sensors in ~30000 modules ~6M Si channels, 0.5 or 1cm² cell size ~400m² of scintillators in ~4000 boards ~240k scint. channels, 4-30cm² cell size

Electromagn. calo (**CE-E**): **Si**, Cu & CuW & Pb absorbers, 28 layers, 25 X_0 & ~1.3 λ Hadronic calo (**CE-H**): **Si** & **scintillator**, steel absorbers, 22 layers, ~8.5 λ

CMS High Granularity CALorimeter

Active Elements:

 Hexagonal modules based on Si sensors in CE-E and high-radiation regions of CE-H

 "Cassettes": multiple modules mounted on cooling plates with electronics and absorbers

 Scintillating tiles with SiPM readout in low-radiation regions of CE-H

Key Parameters:

Coverage: $1.5 < |\eta| < 3.0$ Full system maintained at -30°C ~620m² Si sensors in ~30000 modules ~6M Si channels, 0.5 or 1cm² cell size ~400m² of scintillators in ~4000 boards ~240k scint. channels, 4-30cm² cell size

Electromagn. calo (**CE-E**): **Si**, Cu & CuW & Pb absorbers, 28 layers, 25 X₀ & ~1.3λ Hadronic calo (**CE-H**): **Si** & **scintillator**, steel absorbers, 22 layers, ~8.5λ

Common Running of AHCAL & HGCAL silicon prototype

- In October 2018, collected hadron data with HGCAL silicon module prototypes and the AHCAL prototype
 - 28 layers HGCAL EE (silicon/lead), 12 layers HGCAL FH (silicon/steel), 39 layers AHCAL (scintillator/steel)

HGCAL prototype: GNN reconstruction

- High granularity allows sophisticated reconstruction algorithms
 - Physicist's knowledge: software compensation
 - Machine learning: train a Graph Neural Network
 - With hit energies alone (E) already better than "classical" energy sum
 - Adding position information (E,z) and (E,x,y,z) even better
 - Can also correct for leakage

Other uses of timing

- Precise time information for each hit is interesting also for other applications
- Opens the possibility for full 4-dimensional shower reconstruction
 - More detailed information how hadron showers evolve
 - Could be used in software compensation
 - Could be used for improvements in separation of close-by showers in Particle Flow Algorithms
- Could be used for particle identification by time-of-flight
 - Needs time resolution of ~100ps or better

Calorimetry Conclusions

- Calorimeters are an essential part of particle physics detectors
 - Energy measurement of neutral (and charged) particles
- High granularity calorimeters together with Particle Flow Algorithms can provide unprecedented jet energy resolution
 - Strandarity also very interesting also for background rejection (HL-LHC, FCC-hh)
- > On the horizon: integration of timing information for every hit

Backup