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Overview

> Calorimeter Basics
> New Developments

§ Dual Readout
§ High Granularity
§ Timing
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Why Calorimeters?
Energy measurement via total absorption of the 
incoming particles
• Principle of operation:

• Incoming particle interacts with calorimeter 
material -> particle shower

• Shower composition and dimension depend 
on particle type and detector material

• Energy deposited in form of heat, ionization, 
excitation of atoms (e.g. scintillation), 
Cherenkov light…

• Different calorimeter types use different kinds 
of these signals to measure total energy

• Basic assumption: Signal (S) is proportional to 
incoming energy (E)

• Calorimeters measure charged and neutral 
particles

• Calorimeters have a high rate capability and 
are fast and can therefore recognize and select 
interesting events in real time -> Trigger
Detectors TRISEP L2c Shipsey
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Electromagnetic showers
> electromagnetic showers are simple:

§ electrons and positrons radiate 
photons

§ photons produce electron-
positron pairs

> ~one step per radiation length X0
> in each step

§ number of particles *2
§ mean particle energy *1/2

> at depth t (in X0):
§ mean particle energy E0*2–t

> shower maximum tmax is reached 
when mean energy reaches critical 
energy EC: tmax=log2(E0/EC)

> logarithmic increase of shower 
depth with energy

> radial development is described 
by Moliére radius
§ a cylinder with radius 1 RM

contains ~90% of the total 
energy
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ECAL design
> consequences for ECAL design

§ want dense absorber material with small X0 for compact showers
§ need sensitive material to detect particles in shower
§ granularity for ECAL energy resolution not so important, but relevant 

for position resolution, shower direction, 2-particle separation, ...

sampling calorimeter: 
absorber interleaved with 
sensitive material
> advantages

§ compact
§ can be cheap

> disadvantages
§ limited energy resolution 

because of sampling 
fluctuations

homogeneous calorimeter: 
sensitive material as absorber

> advantages
§ very good energy 

resolution
> disadvantages

§ limited granularity
§ expensive
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Examples of ECAL energy resolutions

homogeneous

sampling

from PDG
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Contributions to energy resolutions
> usually, energy resolution of a calorimeter can be parameterised as

> stochastic term
§ caused by fluctuations in the number of measured particles (intrinsic 

fluctuations, sampling fluctuations, statistical effects in detection, …)
> calibration term

§ caused mainly by non-uniformities, e.g. by calibration
> noise term

§ everything contributing energy independent of initial particle energy, 
e.g. noise

> size and relevance of these contributions are highly dependent on choice 
of calorimeter materials

> real calorimeters often have worsening of resolutions at high energies 
(containment)

σ 𝐸
𝐸

=
𝑎
𝐸
⊕ 𝑏⊕

𝑐
𝐸
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> CMS homogeneous crystal ECAL:

> ATLAS lead LAr accordion calorimeter:

> so CMS should do much better in mass 
resolution for H → gg, does it?

Example ECALs: CMS vs. ATLAS

σ 𝐸
𝐸 =

10%
𝐸
⊕ 0.4%⊕

0.3 𝐺𝑒𝑉
𝐸

σ 𝐸
𝐸 =

3%
𝐸
⊕ 0.5%⊕

0.2 𝐺𝑒𝑉
𝐸
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Example ECALs: CMS vs. ATLAS

> CMS is not that much better than ATLAS! Why?
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Example ECALs: CMS vs. ATLAS

> CMS is not that much better than ATLAS! Why?
> energy resolution is not the only relevant quantity! ATLAS has finer 

granularity and therefore better position and angular resolution
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Example ECALs: CMS vs. ATLAS

> in addition: lots of material in front of calorimeters, so many 
photons convert to electron-positron pairs before reaching ECAL
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Hadronic showers

> hadronic showers
§ much less well understood, and much larger intrinsic variation
§ many processes: quasi-elastic scattering … nuclear break up
§ usually have electromagnetic sub-shower

> relevant length scale: interaction length λInt
> similar to EM showers: logarithmic increase of shower depth with energy
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Examples of HCAL energy resolutions

All hadronic calorimeters are sampling calorimeters!

Why is Zeus so good?

Experiment technology energy resolution

ALEPH Fe / streamer tubes 85%/ÖE

ZEUS U / scintillator 35%/ÖE ⊕ 2%

H1 Fe / liquid argon 51%/ÖE ⊕ 1.6% ⊕ 0.9 GeV/E

D0 U / liquid argon 41%/ÖE ⊕ 3.2% ⊕ 1.4 GeV/E

ATLAS (design) Fe / scintilator 50%/ÖE ⊕ 3%

CMS (design) brass / scintillator 100%/ÖE ⊕ 4.5%
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Hadronic showers: energy resolution and compensation
> hadronic showers contain a large amount of “invisible” energy: nuclear 

binding energy, slow neutrons, neutrinos, ...
> calorimeter response to an electron and a pion of the same energy is 

usually not the same
§ e/p > 1: under-compensating (most calorimeters)
§ e/p = 1: compensating
§ e/p < 1: over-compensating

e: response to EM shower
h: (hypothetical) response 

to purely HAD shower

p = fEM e + (1- fEM) h
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Hadronic showers: energy resolution and compensation
> Why does e/p ≠ 1 have an influence on the resolution?

> the fraction of energy in the electromagnetic sub-shower (fEM) varies 
from shower to shower

> also the fraction of invisible energy varies from shower to shower
> hadronic energy resolution much worse than electromagnetic!
> In addition: the average fEM increases with energy  -> non-linearity

C. Fabjan, F. Gianotti, Rev. Mod. Phys. 75, 1243 (2003)
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Hadronic showers: how to reach compensation?

ZEUS: Highly-segmented, uranium 
scintillator sandwich calorimeter r/o 
by 12,000 photomultiplier tubes

proper choice of active and passive 
thicknesses gives compensation 

Hardware
> design HCAL such that    e/p =1

§ Enhance response to HAD 
shower fraction (h)

§ Reduce response to EM shower 
fraction (e)

> challenges:
§ often deteriorates EM resolution
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Hadronic showers: how to reach compensation?
Hardware
> design your HCAL such that    e/p =1

§ Enhance response to HAD 
shower fraction (h)

§ Reduce response to EM shower 
fraction (e)

> challenges:
§ often deteriorates EM resolution

Software
> correct energy measurement 

depending on fEM
> challenges:

§ need to identify EM sub-
shower and weight HAD 
and EM part differently 

§ See later:
§ Dual readout
§ High granularity
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New developments

• Dual readout
• High granularity 

• Motivation
• Testbeam prototypes and measurements
• Engineering prototypes
• High granularity beyond electron-positron colliders
• High granularity & timing 

• Radiation hardness
• Not really covered here
• Very important for future hadron colliders (FCChh)
• For highest fluence, mainly two technologies suitable

• Liguid noble gas (Liquid Argon)
• Silicon sensors
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Dual Readout: Idea
Measure fEM for each shower directly 
by using scintillation & Cherenkov 
radiation
> Scintillation (S) is produced by all 

particles in a shower
> Cherenkov (C) radiation is produced 

only by “fast” particles (faster than 
the speed of light in the medium)
§ Mainly the electrons & positrons 

in the EM (sub-)shower
> By measuring both S and C for a 

hadronic shower, get a handle on fEM
> Expectation: stochastic term of better 

than 30% should be reachable for 
single hadrons

100 GeV p- DREAM

Plots from 
“DUAL-READOUT CALORIMETRY”,
arXiv:1712.05494
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Dual Readout: Implementation
Several ideas have been explored 
> Spaghetti fiber calorimeters with two 

sets of fibers (DREAM, RD52)
§ Scintillating fibers to detect S
§ Clear fibers (quartz or plastic) 

to detect C
> Distinguish S and C by their spectral 

and/or timing characteristic
§ C is (quasi-)instantaneous, 

small wave length (UV)
§ S is governed by scintillator 

characteristics
> Combination with high granularity: 

dual readout tiles
10 cm
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Dual Readout: Experimental challenge
> Yield of Cherenkov light is 

usually low (much less 
than scintillation)

> In order to demonstrate the 
performance, need to build 
a large prototype with very 
small leakage 
§ Both lateral and 

longitudinal
> So far, ~30% / sqrt(E) has 

been shown for hadrons

NIM A882 (2018) 148
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> Highly granular calorimeter concepts originally developed for 
future electron-positron colliders

>main interest: measurement of jet energies in EW processes

> other interesting processes with jets: everything with t quarks, 
SUSY, …

> don't forget single particles:
§ tau identification relies on ECAL
§ low energy muons don't reach the muon system → identify in calo!

Motivation
from

 ILC
 TD

R
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Why 3-4% jet energy resolution?
> goal: distinguish the decays  W → jet jet and  Z → jet jet by their 

reconstructed mass

> required resolution:  σ(Ejet)/Ejet ≈ 3-4%
> interesting jet energy range:  Ejet ≈ 40 to 500 GeV
> not reachable with LEP (and existing collider) detectors!

from
 C

am
bridge H

EP group
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Particle Flow Algorithm

from: M.A. Thomson,
Nucl.Instrum.Meth. A611 (2009) 25

> Idea:                                       
for each individual particle in a jet,
use the detector part with the best 
energy resolution

> „typical“ jet: (σjet)2

~ 62% charged particles tracking ≈ 0.62 (σtracks)2

~ 27% photons EM calorimeter + 0.27 (σEMCalo)2

~ 10% neutral hadrons HAD calorimeter + 0.10 (σHADCalo)2

~   1% neutrinos + (σloss)2 + (σconfusion)2
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Jet Energy Resolution with PFA

“ideal” traditional HAD calorimeter

realistic ILC calorimeter (ILD)

„Confusion“: wrong association
between tracks and calorimeter
clusters

PFA

> PFA resolution is clearly better than calorimeter alone
> at high jet energy: correct association between tracks and calorimeter 

clusters is very important ⇒ calorimeter with very high granularity
> at low jet energy: dominated by “classical” calorimeter energy 

resolution ⇒ hadronic calorimeter with decent energy resolution
Detectors TRISEP L2c Shipsey
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Particle Flow at Work

> Particle Flow (or similar) algorithms have been used for jet reconstruc-
tion in the past by several experiments (ALEPH, CDF, H1, ZEUS, ...)

> improvement in resolution relative to pure calorimeter algorithms 
depends a lot on the detector itself
§ CMS: HCAL with modest energy resolution → large gain
§ ATLAS: HCAL with good energy resolution, magnet coil between tracker 

and calorimeter → small gain
> none of these detectors were built for Particle Flow!
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Particle Flow Detector

What featires should a detector possess so that it is optimized for Particle 
Flow?

> need good separation of particles entering
the calorimeter

➔ large detector radius and length
➔ large magnetic field to separate

charged from neutral particles

> need compact showers to minimize overlap
➔ calorimeters with small Molière radius

> need minimal amount of dead material
between tracker and calorimeter

➔ calorimeter inside magnet coil

> need detailed information about shower
position and shape

➔ calorimeter with very high granularity

γ
μ
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Calorimeter Technologies for Linear Collider detectors
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Calorimeter Readout Concepts

> digital CAL: count number of hit pixels (off/on)
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> digital CAL: count number of hit pixels (off/on)
> semi-digital CAL: additional information about number of particles within 

one pixel by using 3 thresholds (off/standard/large/very large)
> analog CAL: sum up signals in (larger) cells

> for the hadronic calorimeter, all 3 concepts are studied and have shown 
their physics potential with “physics prototypes”

Calorimeter Readout Concepts
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Electromagnetic Calorimeter: Active Material

Silicon Silicon Scintillator

9cm

14cm

1024 pixel 256 pixel
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Highly Granular HCAL Concepts

analog semi-digital digital
granularity 3*3 cm2 1*1 cm2 1*1 cm2

technology scintillator tiles RPCs (or μMegas) RPCs (or GEMs)
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Measurements in Beam Tests

> In test beams you get only single particles, no jets
⇒ direct measurement of the jet energy resolution not possible

>Nevertheless, measurements in beam tests provide 
important information:
§ hands-on experience with (a small version of) the detector

§ calibration of the detector

§ energy resolution for single particles is one important ingredient     
in the jet energy resolution

§ comparison of hadron showers in data and simulation (Geant4)
⇒ studies of the substructure of showers
⇒ tests of the Particle Flow Algorithms with overlayed showers
⇒ realistic jet energy resolution in the simulation
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Highly Granular ECALs

electron in silicon ECAL prototype 
with hexagonal sensors (6 X0)

pion in silicon ECAL prototype
with square sensors
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How small should the cells be?

1*1 cm2 HCAL cell size 3*3 cm2 HCAL cell size
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From physics prototypes to engineering prototypes
> capabilities of a highly granular

calorimeters successfully
demonstrated with the “physics
prototypes”

> but these were designed for 
beam tests, not really scalable to 
a collider detector

> goal for the “engineering
prototype”: develop, build and 
test a prototype scalable to the 
full collider detector layout
§ integration of electronics into 

layers
§ realistic infrastructure
§ easy mass assembly
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> highly granular scintillator SiPM-on-tile hadron 
calorimeter, 3*3 cm² scintillator tiles

> fully integrated design
§ front-end electronics, readout
§ voltage supply, LED system for calibration
§ no cooling within active layers

> scalable to full detector (~8 million channels)

HBU

Analog HCAL Engineering Design

ILD barrel
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Silicon ECAL + Analog HCAL in Testbeam

> Have just finished 2 weeks of testbeam at the CERN SPS with 
combined silicon ECAL + analog HCAL engineering prototypes

AHCAL: pion shower,
starting in ECAL

AHCAL: tail of an
electron shower

SiECAL: electron shower

Detectors TRISEP L2c Shipsey



High Granularity beyond electron-
positron colliders

> recently also LHC detector collaborations 
adopted the idea of highly granular calorimeters

> granularity driven by pile-up mitigation, NOT 
particle flow



Page 56

>R&D for ALICE FoCal upgrade
>full MAPS prototype, 24 layers

§ 3mm W
§ 1mm sensor layer
§ 120µm sensor (2x2 chips) + 

PCB, glue, air, …
>39 M pixels in 4x4x10 cm3 !

Digital ECAL: Pixel Calorimeter Prototype
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FCC-hh: LAr with high(er) granularity

Detectors TRISEP L2c Shipsey

> Compared to ATLAS, FCC-hh Calo needs finer longitudinal and lateral granularity
§ Optimized for particle flow
§ 8 longitudinal compartments, fine lateral granularity

> Noble liquid (LAr) as active material
§ Radiation hardness, linearity, uniformity, stability

> EM Barrel: Absorbers 50∘ inclined with respect to radial direction
§ Sampling fraction changes with depth: ≈ 1/7 to 1/4
§ Longitudinal segmentation essential to be able to correct
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Granularity and Timing for Background (Pileup) Rejection

> CMS: expect up to 200 pileup events at HL-LHC
§ VBF (H→gg) event with one photon and one VBF jet in the same quadrant

No timing cut

g

VBF
jet

Cut Δt < 90ps   (3σ at 30ps)

Plots show cells with Q > 12fC  (~3.5 MIPs @300µm - threshold for timing 
measurement) projected to the front face of the endcap calorimeter.
Concept: identify high-energy clusters, then make timing cut to retain hits of interest
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CMS High Granularity Calorimeter Endcap Upgrade

> current CMS calorimeter endcap will not survive 
in HL-LHC conditions

> in 2015, decided to replace it with silicon-based 
high-granularity calorimeter
§ synergy with high granularity         

calorimeter concepts developed                  
for electron-positron colliders
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Active Elements:
• Hexagonal modules based on Si sensors

in CE-E and high-radiation regions of CE-H
• “Cassettes”: multiple modules mounted on

cooling plates with electronics and absorbers
• Scintillating tiles with SiPM readout in

low-radiation regions of CE-H

Key Parameters:
Coverage: 1.5 < |η| < 3.0
Full system maintained at -30oC
~620m2 Si sensors in ~30000 modules
~6M Si channels, 0.5 or 1cm2 cell size
~400m2 of scintillators in ~4000 boards
~240k scint. channels, 4-30cm2 cell size

Electromagn. calo (CE-E): Si, Cu & CuW & Pb absorbers, 28 layers, 25 X0 & ~1.3λ
Hadronic calo (CE-H): Si & scintillator, steel absorbers, 22 layers, ~8.5λ

~2m

~2.3m

CE-E CE-H

Scintillator

Silicon

CMS High Granularity CALorimeter
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Common Running of AHCAL & HGCAL silicon prototype

• In October 2018, collected hadron data with HGCAL silicon module prototypes 
and the AHCAL prototype
• 28 layers HGCAL EE (silicon/lead), 12 layers HGCAL FH (silicon/steel), 39 

layers AHCAL (scintillator/steel)
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HGCAL prototype: GNN reconstruction

> High granularity allows sophisticated reconstruction algorithms
§ Physicist’s knowledge: software compensation
§ Machine learning: train a Graph Neural Network
§ With hit energies alone (E) already better than “classical” energy sum
§ Adding position information (E,z) and (E,x,y,z) even better
§ Can also correct for leakage
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Other uses of timing

> Precise time information for each hit is interesting also for other applications
> Opens the possibility for full 4-dimensional shower reconstruction
§ More detailed information how hadron showers evolve
§ Could be used in software compensation
§ Could be used for improvements in separation of close-by showers in Particle 

Flow Algorithms
> Could be used for particle identification by time-of-flight
§ Needs time resolution of ~100ps or better
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Calorimetry Conclusions

> Calorimeters are an essential part of particle physics detectors

> Energy measurement of neutral (and charged) particles

> High granularity calorimeters together with Particle Flow Algorithms can 
provide unprecedented jet energy resolution

> Granularity also very interesting also for background rejection 
(HL-LHC, FCC-hh)

> On the horizon: integration of timing information for every hit 
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