Semiconductor Detectors
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Tracking and Vertex Detectors

» Solid state detectors especially silicon offer high segmentation
= Determine position of primary interaction vertex and secondary decays

This 4*wbulnd have hbt been possible
without semiconductor (pixel and strip)
motrackers




Solid State Detectors

Many different silicon detector technologies for particle tracking have been developed over the last four decades:

* Silicon strips * CMOS MAPS
* Multiplexing ASICs * Silicon-on-insulator pixels
* CCDs » Vertical 3D integration

DELPHI

* Hybrid planar pixels ; 'F * Depleted MAPS

* Drift detectors . * Fast-timing detectors
» DEPFET * Hybrid MAPS

* Hybrid 3D pixels

P. Allport

Remarkable: every decade the instrumented areas have increased by a factor of 10 while the numbers of
channels in the largest arrays have increased by a factor of 100

Solid state detectors now more radiation hard and now also used for calorimetry and time-of-flight
But improved precision, radiation hardness and timing are needed



https://doi.org/10.1038/s42254-019-0081-z

The Birth of Silicon Sensors in Particle Physics

FABRICATION OF LOW NOISE SILICON RADIATION DETECTORS BY

J. Kemmer THE PLANAR PROCESS
Fixed target experiment with a ) KEMMER
planar d|ode Fachbereich Physik der Techmschen Universitat Munchen, 8046 Garching, Germany
Later Strip devices -1980 Received 30 July 1979 and in revised form 22 October 1979

Dedicated to Prof Dr H -J Born on the occasion of s 70th birthday

By applying the well known techniques of the planar process oxide passivation, photo engraving and 1on implantation, Si
pn-junction detectors were fabnicated with leakage currents of less than | nAcm ™ 2/100 um at room temperature Best values
for the energy resolution were 10 0 keV for the 5 486 MeV alphas of 24'Am at 22°C using 5 xS mm? detector chips

NA11 at CERN

First use of a position-sensitive silicon detector in HEP
experiment

- Measurement of charm-quark lifetime (decay length 30 ym)
- 1200 diode strips on 24 x 36mm?2 active area

- 250-500 pym thick bulk material

+ 4.5 ym resolution
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- Particle tracking

- Vertexing L
primary and secondary vertices -
--" Secondary vertex

decay length : '}
. Primary vertex
impact parameter L=p/mcrt

- By measuring the decay length, L, and the momentum,

p, the lifetime of the particle can be determined

- Need accuracy on both production and decay point

- Op = f( vertex layers, distance from main vertex, spatial beam
resolution of each detector, material before precision
measurement, alignment, stability)

b = distance of closest
approach of a
reconstructed track

to the true interaction point
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Why Silicon

- Semiconductor with moderate bandgap (1.12eV) plus phonon excitation
- Energy to create e/h pair (signal quanta)= 3.6eV

- (c.f Argon gas = 15eV) T - -t——l_‘:‘/—ﬁv
- High carrier yield sl oomm—ﬁ?_
- Better energy resolution and high signal 5;5 1
- no gain stage required RNy g;f‘; ]
© ELECTRONS & |
- High density and atomic number _4'

- Higher specific energy loss
- Thinner detectors
- better spatial resolution

- High carrier mobility Fast!
- Less than 30ns to collect entire signal

- Large experience in industry with micro-chip
technology
- Intrinsic radiation hardness

RADIATION IONIZATION ENERGY (eV)
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Silicon Bond Model

Example of column IV elemental semiconductor:

T=0K || T>0K

¢ ... Conduction electron

:__:__:__: ::@:::::::: * .- Valence electron

- Each atom has 4 closest neighbours, the 4 electrons in the outer shell are shared and form covalent bonds.
- At low temperature all electrons are bound
- At higher temperature thermal vibrations break some of the bonds
- free e- cause conductivity (electron conduction)
* The remaining open bonds attract other e-_ , “holes” change position (hole conduction)

Instrumentation Lec



Energy Bands

- In an isolated atom the electrons have only discrete energy levels

- In solid state material the atomic levels merge to energy bands

- In metals the conduction and the valence band overlap, whereas in isolators and semiconductors
these levels are separated by an energy gap (band gap)

- In isolators this gap is large

electron energy

empty Bl ... occupied levels .. empty levels
conductign band *....... single empty levels (electron)
. 0 ... single occupied levels (holes)
cond:;}gtr?band conduction band
e & & 0 00
Fgap>>eV Ifqge =1eV_ _ AIfgag:_‘el’ _ _conduction conduction band
. ® & & & 0
occupied Metal Metal
valence band (conduction (partly
Semiconductor Semiconductor band partly overlapping
Isolator atT=0K atT>0kK occupied) bands)
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Intrinsic Carrier Concentration

- Small band gap in semiconductors
—> electrons already occupy the conduction band at room temperature

- Electrons from the conduction band may recombine with holes

- thermal equilibrium is reached between excitation and recombination:
- charge carrier concentration ne = np = n;
E
exp|- —L
2kT

—> intrinsic carrier concentration:
- In ultrapure silicon the intrinsic carrier concentration is 1.45-1010 cm-3

E

n; = +/NgN, -exp(—m(—“{,_) o« T

N |w

- With approximately 1022 Atgms/cms about .l in.10'2 silicon atoms is ionized



Material Properties

108 e et ‘
Drift velocity for electrons: V, =-u,E — ] T
B GaAs |(ELECTRONS)
% T T ‘ 1T
— . — ‘\E) 107 LD . Si |l e |
for holes: Ve = Hp " E N A e e
E B — -~ TSI (HOLES)
s A | |
e, Al ar
Mobility for electrons: Hn m, e S ===
—1 ] ii - ,..<4T=300K[
) B ri/ | |
er, /i,% i | i
. 5 Ll 11 | i
for holes: Up = p= 108 103 104 e 105
p ELECTRIC FIELD (V/cm)
Mn(Si, 300 K) =~ 1450 cm2/V's 10x108 ——
. Va=pné
Up(Si, 300 K) ~ 450 cm2/Vs AN _—~TELECTRONS
N
p= 1 / //
Resistivity: e(upng + u,ny) —

6 1
=
|
_

With the charge carrier concentration in intrinsic silicon

Ne = Nh=1.45-1010 cm-3 .

—> intrinsic resistivity p= 230 kOcm TRISEPP 2022 Instrumentation Lecture 2 V 14300K)
0
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How to make a detector

Thickness: 0.3mm ‘

Area: 1cm? signal current

Resistivity: 10kQcm

Resistance (pd/A) : 300Q A

Mobility (electrons): ~1400 cm2/Vs E >
Collection time: ~10ns g

Charge released: ~25000 e~4fC Y

Need an average field of

E=v/u=0.03cm/10ns/1400cmz2/V ~ 21000 V/cm or V=60V

Is this detector going to work?
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How to malke a silicon detector

100.0

Mean ionization energy lp = 3.62 eV

-
°©
o

dE fdx [keV/pm]

S mip dE/dx = 3.87 MeV/cm

-
=]
v

0.1

1 10 100 1000 10000 100000
ENERGY [MeV]

Assuming same detector with a thickness of d = 300 um and
an areaof A=1cm2.

Signal of a mip in such a detector:

dE/dx-d 3.87-10°eV/cm-0.03cm
I, 3.62eV

Intrinsic charge carrier in the same volume (7 = 300 K):

~3.2-10* e h*=pairs

n,dA=145-10"cm”-0.03cm-1cm® = 4.35-10%e h*—pairs
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How tonotmalke a silicon detector

100.0

10.0

dE fdx [keV/pm]

\\~
1.0 AN

0.1

1 10 100 1000 10000 100000
ENERGY [MeV]

Assuming same detector with a thickness of d = 300 um and
an areaof A=1cm2.

Signal of a mip in such a detector:

dE/dx-d 3.87-10°eV/cm-0.03cm
I, 3.62eV

Intrinsic charge carrier in the same volume (7 = 300 K):

~3.2-10* e h*=pairs

n,dA=145-10"cm”-0.03cm-1cm® = 4.35-10%e h*—pairs

Mean ionization energy lp = 3.62 eV

* mean energy loss per flight path of a
mip dE/dx = 3.87 MeV/cm

(THore AEEDE
IS HERE - We HAk
I 0 FINDTT.

Result: The number of thermal created e—h+-pairs (noise) is four
orders of magnitude larger than the 'siginaic e’ 13




P-n-junction — Doping

- Remove the charge carriers by generating a depletion zone in a pn junction
- create n- and p-type silicon by doping

- Doping: replacement of a small number of atoms in the lattice by atoms of neighboring columns from the
periodic table
—> energy levels within the band gap created
—> conductivity altered

n-type silicon p-type silicon

- Dopant: element Il atom

® ® ®
© © © - Dopant: element V atom (e.g. B, Al, Ga, In)
(e.g. P, As, Sb) - Acceptor
> - Donor - one valence bond open
- 5th valence electron is ® attracts electrons from

neighbouring atoms
* majority carriers: holes
- space charge: negative

weakly bound
* majority carriers: electrons
- space charge: positive

&) &) & °
+ @D
&) &) & °
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Doping

n-type silicon p-type silicon '
- Energy level of donor just below the edge of the - Energy level of acceptor just above the edge of
conduction band the valence band
- At room temperature most electrons are raised to the - At room temperature most levels are occupied by
conduction band electrons leaving holes in the valence band
- The Fermi level EF moves up - The Fermi level EF moves down
Ec conduction band Ec conduction band Ec conduction band Ec conduction band
A N o000 o000 o o o0 N N e ° .
> _i__i__i__i__i__L_i_}:0.0SfaV —e——e——e——e—-e——e——e—}:_o'(_)sev >
> . occupied _ionised =
O | Efj donator Eki \donators Q| Egi Efj
SN levels N E [} N N
5 F 5 empty Er
: 3, e o
) E\\: [] \‘(+++++++}=0_05ev \‘:+++++++}=0.05ev
... empty levels e .. single occupied level (electron) - emply levels ® ... single occupied level (electron)
m ... occupied levels o ... single empty level (hole) I ... occupied levels o ... single empty level (hole)
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Creating a p-n junction

- Difference in the Fermi levels cause diffusion of excessive carriers until thermal equilibrium

- Fermi level is equal
- Remaining ions create a space charge region and an electric field stopping further diffusion

- Space charge region is free of charge carries —> depletion zone

P n
tO © ©F0. O DO O © D_ S
+ + + + + - - ¥ - +
SICIASHICING) D O D_D"D S
+ + + -+ + - + :
-© © ©f0 O O O OO0 D ~ O

o Drift IAE

S Diffusion E
C
N/

© ... acceptor + ... hole

@ ... donor — ... conduction electrofkisepp 2022 Instrumentation Lecture 2



Biased p-n junction or How to really make a silicon detector

p-n junction with forward bias p-n junction with reverse bias

""" VAE - eV
Ec
— [
B JevTTTTTT Er

- External voltage V with +topand — ton
—> e- and holes are refilled to the depletion zone
- depletion zone becomes narrower (forward biasing)
- Consequences:
- The potential barrier becomes smaller by eV . : :
- Diffusion across the junction becomes easier + The potential barrier becomes higher by eV

- The current across the junction increases si@*ﬁﬁ‘ﬁ’eaﬁtlynstrumentéticp ifygion across the junction is suppressed
- current across junction is very small (“leakage current”)

- External voltage V with — top and +ton

—> e- and holes are pulled out of the depletion zone
- depletion zone becomes larger (reverse biasing).
- Consequences:



Depletion Zone

Effective doping concentration in typical silicon
detector with p+-n junction
Nz =105 cm=3 in p+ region
N 4= 1072 cm=3in n bulk.

Without external voltage: W, =0.02 um

Wh=23 um undepleted zone
With bias voltage: p*n junction "
W=\/28V(A1 +]$j . b
q b 4 Resistivity: P = G N,

High-resistivity material (i.e. low doping) requires low

For a given thickness, Full Depletion Voltage is: _
depletion voltage :

2
Vi = aN W FZ sensors:
2e Doping concentrations: 1012—-1015¢cm-3
Resistivity ~ 5 kQcm
W = 300um, Np=5x1012cm-3 —>V = 100V CMOS:
TRISEPP 2022 InstrumentaR@RING.concentrations: 1017 —1018 cm-3 18
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Properties of the depletion zone

Current of the reverse biased diode Diffusion current
- From generation at surface, interfaces, edge of depletion region
- Negligible for a fully depleted detector

Current
-
—

/ Generation current

- From thermal generation in the depletion region
- Reduced by using pure and defect free material
- Must keep temperature low & controlled

.

* Breakdown

|

\

Surface
N

Volume*

J =lqﬂW Juow o T exp|
o271, o 2kT ) factor 2 every AT=8K

|
|
|
|
I
— __._/ l
|
|
|
I
|
|

Voltage
Vdepl Vma:iJ £

exercise
CV/IV

1/C? [a.u.]
\

Capacitance of the reverse biased diode

- Similar to parallel-plate capacitor
Fully depleted detector capacitance defined

by geometric capacitance I
EE 4

C=’L-A —

2,up V‘ 0 50 100 150 200 250 300
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Position Sensitivity - Silicon Strip Detectors (DC)

- Segmenting the implant
Zx Zx Zx —> one-dimensional position of the traversing particle

- Simplest version: DC-coupled strip detector

* p-in-n sensor:

- Strips are Boron implants (p+)

- Substrate is Phosphorous doped (~2-10 kQcm)
+ Thickness ~300um
* Vgep < 200V

- Backside Phosphorous implant (n+) to establish ohmic contact
and to prevent early breakdown

- Highest field close to the collecting electrodes where most of
the signal is induced
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Position Sensitivity - Silicon Strip Detectors (AC)

‘

- AC coupling blocks leakage current from the amplifier

S0 Al - Integration of coupling capacitances in standard planar
\ / process:
_|.-.|_|-.|_|-.|_ - Deposition of SiO2 with thickness of 100—200 nm between
p+ and Al strip
_ - Increase quality of dielectric by a second layer of SisN4
\ p+_S|
n-Si
n+-Si
»~ connect bias to strips —>

— Long po|y Silicon resistor
\ Al with R>1MQ

V> 0 (bias voltage)

TRISEPP 2022 Instrumentation Lecture 2



summary AC coupled strip sensor

bias ring .. guardring  wire bond -

bias resistor
/ DCpad _AC pad

aluminium strip

g,

oxide
(thin layers of
SIO, and Si;N,) |
n dayer -~ & -|mplants below
blas and
- "I I" "_'I
p -implants below/| w p guard ring

bias and guard nng ""“alummlum backplane
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Fabrication of Planar Silicomn Sensors - Wafers

Properties of Si bulk required for detectors:
- 4, 6 or 8 inches

- slice (lap, etch, polish)

_ _ _ wafers from ingot
- Lattice orientation <111> or <100>

- high Resistivity 1-10 kQcm

Float Zone process Czochralski process

- single crystal seed
- melt the Poly-Si rod and
- ‘pull’ the singe-crystal ingot silica

Poly-Si Rod Wy crucible

mono crystalline Ingot

- Si meltin silica crucible

- ‘pull’ the singe-crystal from
melt

- less pure as O (and other)
in melt

- used by IC industry

+ now also available in higher
resistivity

Single Crystal silicon

Instrumentation Lecturg2 23




Fabrication of Planar Silicon Sensors - Sensor Fabrication

1. Starting Point: single-crystal n-doped n-Typ Si
wafer (Np = 1-5-10'2 cm3)
2. Surface passivation by SiO,-layer ___sio,

(approx. 200 nm thick). E.g. growing by
(dry) thermal oxidation at 1030 °C.

3. Window opening using
photolithography technique with
etching, e.g. for strips

4. Doping using either

« Thermal diffusion (furnace)
+ lon implantation
- p*-strip: Boron, 15 keV, v Y Y Yl v vy
N, =510 cm= ]
- Ohmic backplane: Arsenic,
30 keV, Np = 5:10"5 cm™

e T"oal K78 T S e R e e TR SN
TRISEPP 2022 Instrumentation Lecture 2 T T T TAST T 24 T
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Fabrication of Planar Silicon Sensors - Sensor Fabrication

5. After ion implantation: Curing of _/,h' b
damage via thermal annealing at P it
approx. 600°C, (activation of dopant —=
atoms by incorporation into silicon
lattice) e

6. Metallization of front side: sputtering
or CVD

7. Removing of excess metal by -
photolithography: etching of non n_pa n_na n_n

covered areas

8. Full-area metallization of backplane
with annealing at approx. 450°C for
better adherence between metal and

silicon = = = =

Last step: wafer dicing (cutting)

TRISEPP 2022 Instrumentation Lecture 2 pAs)




Signal Generation

The signal

- depends essentially only on the thickness of the depletion zone and on the
dE/dx of the particle

- electron-hole pairs generated along the particle trajectory

Reminder:
- mean energy loss per flight path of a mip dE/dx = 3.87 MeV/cm
- Fluctuations give the famous “Landau distribution”
- The “most probable value” MPV is 0.7 of the mean value
- For 300 um of silicon, most probable value is
~23400 e- / h pairs

25000 [~

20000 [

The noise in a silicon detector system 15000 [
- depends on various parameters: geometry, biasing scheme, readout electronics ;
- typically given as “equivalent noise charge” ENC

10000 |-

- This is the noise at the input of the amplifier in elementary charges 000 | ': M
- Most important wise contributions from: Detekior R t e
_| 1000 30000 40000 50000
| : electrons
Leakage current (ENCy) Detector capacitance (ENC¢)
Detector parallel resistor (ENCRp) Detector series resistor (ENCRg) / Rp —|— C exercise
I Landau distribution

ENC = .[ENC2Z + ENC? + ENC2_ + ENC? ) T
\/ c | fp = TRISEPP 2022 Instrumentation LectureEquivalent circuit diagram of a 26
silicon detector.




Signal Collection

Drift under E-field
* p* strips on n- bulk
+ pt —ve bias
- Holes to p+ strips, electrons to n+ back-plane
- E-field determines the charge trajectory and velocity

Typical bias conditions
- 100V, W=300um E=3.3kVcm-!
- Collection time: e=7ns, h=19ns
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Charge Collection - Simulation

Y [um]

a typical silicon sensor
thickness 320 um

- n bulk
- p+ readout strips . .
P P lonizing particle at 45°
incidence
Electric field configuration current density
0 0
50 50
100 100
150 5 150
i >
200 Abs(ElectncField) [Viem 1] 200
1 P G.CE+04
] 4,1E+04
250 326404 250
. 2.3E+404
: . 1.4E+404
300 5.0E+03 300
0 100 200 300 400 0 100 200 300
(74 X [uml]

X [um]

Simulation with Synopsys TCAD by Thomas Eichorn
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Diffusion and Position Resolution

Diffusion
0, -k

. 1

“N\\"‘\\ t2

. Ny t3
> X ty
— t5
-~
e W -
h =
T

- Diffusion is caused by random thermal motion
- Width of charge cloud after a time t given by

KT
op = /2Dt with: D =~ u

op ... width ‘root-mean-square” of the charge carrier distribution

t ... drifttime D ... diffusion coefficient

k ... Boltzmann constant T ... temperature

e ... electron charge u ... charge carrier mobility

Note: D« pand t« 1/u, hence o, is equal for e and h+.

-Diffusion:Typical value: 8 um for 300 um drift.
‘Can be exploited to improve position resolution

TRISEPP 2022 Instrumﬁanlafi% llecturg 2

Resolution

digital readout
single strip clusters

Th
Th

seed .

neigh.

EEENEMMEE XN
FrPFRRIRIRRERY

nw-
m-

-
-
-

@
s

N

analogue readout
multiple strips hit

: - | I I
1 | - -
i I ]

(N TR S T S S T U S R )

7 tophat
600 b L - Enies...... 10000
5 Lru Mean 0.01246
£00 RMS 14.49
Underflow 0
Overflow 0

-60 20 40 60

_ pitch

1.5* (S/N)

2400,

20Aﬂ§ ]

2000E

1800C

16005

12005

1000F

nnnE

6001

400F

2005 [- 9

ot b D7

T"%0 40 =20 0 20 a0 60



More on Resolution — how to increase

- resolution depends on S/N --> increase S/N

- resolution pitch dependent --> decrease pitch

- draw-back: increased number of readout channels
increased power dissipation

increased cost

- resolution better when charge shared on several strips N
t t

- implementation of intermediate strips 20 ym | é readout elektronics %

: : = Al (1 pm)
- strips not connected to the readout electronics o
- located between readout strip

signal
signal

- Signal is transferred by capacitive coupling to the readout strips
—> more hits with signals on more than one strip

—> Improved resolution with smaller number of readout channels.
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Radiation Damage at the (HL-)LHC

N

- at LHC and even more at HL-LHC detector exposed to
"] high levels of radiation

1e+17

oms . N;'uttoﬁs,';:gch -
i i roons, £=0Ccm — ]
Simulation PreI/mln?ry Charged Pions, Z = 0 om ]
All'Particles,Z=0cm —— - radiation fields:
Neutrons, Z = 250 cm R ) .
Protons, Z = 250 cm ------- : - charged particles dominate at small radii

Charged Pions, Z =250 cm ------- ] . . .
All Particles, Z = 250 cm ------- neutrons equal or dominant at higher radii

1e+16 {*

1e+15 A

-+ strip trackers: LHC: up to 1.8 x 1014 negg/cm?

1e414 oo S

HL-LHC: up to 1.1 x 1015 neg/em?

1 MeV n-eq fluence (cm™)

rout3 i - what happens to silicon sensors?
e+13

i : | | ®eq: equivalent fluence
R B R S S SR . .

les12 0 20 20 po 80 100 -damage of different particle types

CMS FLUKA Study v.3.13.0.0 Radius (cm) normalized to 1MeV neutrons

FLUKA simulation of the fluence levels in the CMS Tracker after 3000 fb—1
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Radiation Damage

Particles passing through silicon material loose energy through ‘
interaction with shell electrons (lonizing Energy Loss)
—> surface damage
- local charges accumulate in surface (charges cannot recombine in insulating surface, i.e. SiO2 and Si/SiO>
interface, thus it causes damage in the surface)

—> oxide charges, interface traps
- damage caused primarily through photons, charged particles
fast recombination in silicon bulk —> no damage in the bulk

Interaction with atomic core or whole atom (Non lonizing Energy Loss)
—> bulk damage

- Displacement of atoms in the lattice
- Caused by massive particles as protons, pions, neutrons

Take away:
IEL NIEL
- to first order not relevant for planar sensor - major degradation of sensor properties with irradiation

- becomes important for ASICs, monolithic sensors
- becomes important in combination with bulk damage ;5 s rumentation Lecture 2 0



Bulk Damage

Primary Knock on Atom
displaced out of lattice site

Vacancy Interstitial

©.0 @O
o
©. ® e
@0 0 O

- Interstitials and Vacancies are very mobile

at T>150K and migrate through lattice

- Annihilate --> no damage remaining

- Reactions with each other and impurities
(Vz, VIO,,...)

- Along path of recoil —> formation of more
defects

- at the end clusters formed

Cluster Defect

= defects in the crystal Ec \\ /V
= point defects and “cluster” defects + 3 electrons
= energy levels in the band gap filled onor ——
— / holes
Ev acceptor
charged deep traps (e and h), deep traps,
defects recombination centers generation centers
=Nett » Vaep = Charge Collection = Leakage current

TRISEPP 2022 Instrumentation Lecture 2 ETfiCiency
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NIEL Scaling

e NIEL - Non lonizing Energy Loss scaling using hardness factors

Hardness factor k
of a radiation field (or monoenergetic particle) with respect to 1 MeV neutrons

| jD (E ) ¢(E ) dE Displacement damage functions
K = ® 4
10 RRARAAA DAL B I B B LA SULEA AL B I B B B B
D(IMeV neutrons) I ¢(E) dE ) T
3 [ T T T T \\ ]
10 neutrons \‘v protons \\‘
_wep o i
AN
*E energy of particle @ 10k 0213 ] \v\pmtons ]
* D(E) displacement damage cross section for a certain particle at energy E % o 0.6 ions -
D(1MeV neutrons)=95 MeV-mb s 1000 4L P
®(E) energy spectrum of radiation field a 107! TR
The integrals are evaluated for the interval [Eyn,Enax], being Eyn and Eyax the 5\ 102
minimum and maximum cut-off energy values, respectively, and covering all = neutrons |
particle types present in the radiation field 103 clectrons ]
104 4
NIEL Hypothesis: damage parameters scale with NIEL

10‘5 L g L L L L L L L g L L
10910 10® 107 10° 10° 10* 107 102 10" 10° 10" 10° 10° 10

1 MeV neutron equivalent particle energy [MeV]
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Sensor Properties after Irradiation - Leakage Current

...fluence dependent

...annealing dependent ‘

-1
10 I 6 T T T 0
¢ n-type FZ - 7 to 25 KQcm e .
5 © n-type FZ -7 KQcm & — g i C o
o 10 & n-type FZ - 4 KQem ’,,/"' E = St ".}\ 80 min 60°C 15
= O n-type FZ - 3 KQcm P L \o‘\ /
\r';_g 10_3 - p-type EPI - 2 and 4 KQcm > Qdi? | << 4} \‘\‘ 14
< - o~ NN
— A s 3| L 13
> 10-4 i /E’Zf v n-type FZ - 780 Qcm | = ~-
- ) M O n-type FZ - 410 Qcm — T ~a_ "
- «* n-type FZ - 130 Qcm =z | o 1=
<1 10} _;D’ 80 min 60°C * XYPeFZ-110Qcm S » oxygen enriched silicon [0] = 2107 cm™
'z ' ' e n-type CZ - 140 Qcm It — parameterisation for standard silicon 11
¢ p-type EPI - 380 Qcm L
1()-6 o ‘ o U o () l 1 L [:.IA\AclllPhD Thesis]
‘10! 1012 105 101 10%° 1 10 100 1000 10000
O, [em~] AN PAD e annealing time at 60°C [minutes|]

- independent of material

. independent of type of irradiation + current decreases with annealing

. Al
Damage parameter | _ —> consider annealing

V'(Deq —>run cold

- strong temperature dependence Iocexp(—E%{ T]
B
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3d Sensor Concept

n-columns -columns
n\ p;: wafer surface

A A
£
= g
o (=]
o o
(3] (3]

v v

n-type substrate
» Non planar detectors . -
- etch columns into silicon

- technology developed in the last years

* Deep holes are etched into the silicon
- pixels and strips possible (connect columns of one row into strip)

— filled with n* and p* material.

— Voltage is applied between

— Depletion is sideways . disadvantage:
- geometrical efficiency highly dependant on particle

« Small distances between the electrodes incidence angle

* Very low depletion voltages
* Very fast, since charge carries travel - ATLAS IBL deployed 3d sensors in more forward (backward) region:
44
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Radiation Hardness - Comparison

Irradiation with Neutrons

= p-side readout: holes
= n-side readout: electrons

= electrons better than holes

» MCz better than FZ due to
higher oxygen content

coll. charge [ke]

P=1x10'5 n cm=2
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Photo-Lithography

Positivresist

[ 2.
[ 4
—

exposure

5 } f E mask
“~_ photoresist
/
/ Si02
Substrat (Si)
Negativresist
v —
developing
* [—
etching
v —
Photoresist
removal
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Fermi distribution, Fermi levels

Fermi distribution f(E) describes the probability that an electronic state with

energy E is occupied by an electron. 1

The Fermi level E¢is the energy at which the probability of occupation is 50%.
For metals E is in the conduction band, for semiconductors and isolators Egis in

the band gap

Fermi distribution function for
different temperatures
T,>T;>T,>T,>T,=0K

T, = 0 K: saltus function

J(E)=——F%-

F

l+e T

o
o

Fermi-Funktion f(E)

0

0.5 E¢ Er

Energie E
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Noise

> The most important noise contributions are:

Detektor Rs tp
= Leakage current (ENC)) ‘” >
= Detector capacitance (ENCc)

| I ||R, ==C
= Detector parallel resistor (ENCrp) T
= Detector series resistor (ENCrs) 1 1 1

Equivalent circuit diagram of a
silicon detector.

> The overall noise is the quadratic sum of all contributions:

ENC = [ENCZ + ENG? + ENCE, + ENCE
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Germanium:

Used in nuclear physics

Needs cooling due to small band gap of 0.66 eV (usually done with liquid nitrogen at 77 K)
Silicon:

Can be operated at room temperature

Synergies with micro electronics industry

Standard material for vertex and tracking detectors in high energy physics
Diamond (CVD or single crystal):

Allotrope of carbon

Large band gap (requires no depletion zone)

very radiation hard

Disadvantages: low signal and high cost
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Compound Semiconductors

> Compound semiconductors consist of
. _ I TR TR S\VA AVARRVIERVITIRVIIT
= two (binary semiconductors) or 1 |T| EX
H He
= more than two — e
2 . 4 5 6 7 8 9 10
atomic elements of the periodic table. Be| |EBTJRCT N RO |ERT | Ne
. . o 12 13 14§ 15[ 16| 17 || 18
> Depending on the column in the periodic system of 3 . Mg | AL | sifP| s cl|ar
elements one differentiates between - . 200 T b call acll sall e | &
= |V-IV- (e.g. SiGe, SiC), 5 . 3g| | 49| 50| 51| 52| 53]| 54
Sr In | Sn | Sh || Te | Xe
= llI-V- (e.g. GaAs) 6 . 56| | 81 32‘ 83|| 8a|[ 85| 86
Ba TI | Pb || Bi|| Po || At |[ Rn
= [I-VI Compounds (CdTe, ZnSe) . ;-BE r'i“l'; -;IZ o {"1..’.1.; m
| Ra Uut { Uug | Uup|; Uuki Uus |Uuo

> important lll-V compounds:

= GaAs: Faster and probably more radiation resistant than Si. Drawback is less experience
in industry and higher costs.

= GaP, GaSb, InP, InAs, InSb, InAIP
> important II-VI compounds:
= CdTe: High atomic numbers (48+52) hence very efficient to detect photons.

= 7ZnS, ZnSe, ZnTe, CdS, CdSe, Cd1-xZnxTe, Cd1-xZnxSe <)y
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high resolution, high granularity

low material for minimal multiple scattering
high speed

low power consumption

radiation hardness
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