Experimental Neutrino Physics

Deborah Harris (she/her/hers) deborahh@yorku.ca

14-15 July 2022

TRISEP Summer School

With much help from

International Neutrino Summer Schools of the past

and the

Neutrino 2022 Conference: https://indico.kps.or.kr/event/30/

Who am I?

- This is my fourth year at York University, with a joint appointment with Fermilab, (the TRIUMF of the US).
- Before that, I worked 20 years as a Scientist at Fermilab
- Have seen different aspects of particle physics:
 - Graduate thesis looking for CP-violation in rare Kaon decays
 - Spent postdoc years studying weak interactions with high energy (~100GeV) neutrinos
 - Started working on neutrino oscillations (~GeV neutrinos)
 - Initially worked on neutrino beam designed for MINOS
 - Started worrying about neutrino interactions-enter MINERvA!
 - Collaborator on T2K & DUNE

What this course will cover

- Neutrino Oscillations
- Neutrino Mass and Neutrinoless Double Beta Decay
- Neutrino Telescopes
- Experimental Details: How these measurements are made

$$N = \Phi \sigma M \epsilon$$

Events=flux [v/area]*cross section [per nucleon]*detector mass [# nucleons]*efficiency

"Experimental ν Physics in 25 words or less"

- Neutrino Sources (Φ)
 - Neutrinos are everywhere
- Neutrino Interactions (σ)
 - It's all about thresholds
- Neutrino Detectors $(M\epsilon)$
 - Different strategies for different energies (and helicities)
- Current Results
 - Precision $v_e(\bar{v}_e)$ Appearance and $v_\mu \bar{v}_\mu$, \bar{v}_e Disappearance
- Next Steps
 - Bigger Detectors, more intensity, new windows

$N = \Phi \sigma M \epsilon$

Neutrino Oscillations

How do neutrinos change flavour over time?

3-Generation Neutrino Oscillation Mixing

Unitary matrix defined by 3 mixing angles and a phase Call angles $\theta_{12}, \theta_{23}, \theta_{13}, \delta$ denote $s_{ij} = \sin \theta_{ij}$ and $c_{ij} = \cos \theta_{ij}$

Additional Complication: Matter Effects

• The oscillation probability changes differently for electron neutrinos vs antineutrinos when they propagate through matter:

- Can't treat neutrinos propagating through earth simply as mass eigenstates, have to take into account electron flavor
- This would give an apparent CP violation just because the earth is not CPsymmetric

14-15 July 2022

Additional Complication: Matter Effects, with math...

• Remember the 2-generation formula? $P(\nu_{\mu} \rightarrow \nu_{\tau}) = \sin^2 2\theta \sin^2 \left(\frac{(m_2^2 - m_1^2)L}{4E}\right)$ Wolfenstein, PRD (1978) $2\sqrt{2G_F n_e E_v}$ $n = e^{-}$ density $\sin^2 2\Theta$ $\sin^2 2\Theta_M = \frac{\sin^2 2\Theta}{\sin^2 2\Theta + (\pm x - \cos 2\Theta)^2} \quad L_M = L \times \sqrt{\sin^2 2\Theta + (\pm x - \cos 2\Theta)^2}$

v Oscillation Probabilities

- v_{μ} Disappearance: $1 \sin^2 2\theta_{23} \sin^2(\Delta m_{32}^2 L/4E)$
- v_e Disappearance:

 $P_{\bar{\nu}_{e} \to \bar{\nu}_{e}} \approx 1 - \sin^{2} 2\theta_{13} \sin^{2} \left(\Delta m_{31}^{2} L / 4E \right) - \cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} \left(\Delta m_{21}^{2} L / 4E \right)$

 v_e appearance in a v_μ beam: even more complicated...

•
$$P(\nu_{\mu} \rightarrow \nu_{e}) = P_{1} + P_{2} + P_{3} + P_{4}$$

 $P_{1} = \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \left(\frac{\Delta_{13}}{B_{\pm}}\right)^{2} \sin^{2} \frac{B_{\pm}L}{2}$
 $P_{2} = \cos^{2} \theta_{23} \sin^{2} 2\theta_{12} \left(\frac{\Delta_{12}}{A}\right)^{2} \sin^{2} \frac{AL}{2}$
 $P_{3} = J \cos \delta \left(\frac{\Delta_{12}}{A}\right) \left(\frac{\Delta_{13}}{B_{\pm}}\right) \cos \frac{\Delta_{13}L}{2} \sin \frac{AL}{2} \sin \frac{B_{\pm}L}{2}$
 $P_{4} = \mp J \sin \delta \left(\frac{\Delta_{12}}{A}\right) \left(\frac{\Delta_{13}}{B_{\pm}}\right) \sin \frac{\Delta_{13}L}{2} \sin \frac{AL}{2} \sin \frac{B_{\pm}L}{2}$
14-15 July 2022

9

Measuring Oscillation Probability:

$$\Phi_{\beta}(t) = \Phi_{\alpha}(0)P_{\alpha \to \beta}(t) = \Phi_{\alpha}(L=0)P_{\alpha \to \beta}(L/E)$$

- Must know or measure Neutrino Flavor
- Distance between creation and detection
- Neutrino Energy
 - No source we can use today is monochromatic!
 - Initial state: neutrino plus nucleus or electron
 - Final state: a bunch of stuff you only measure so well, sometimes you only measure the charged lepton
- Neutrino or Antineutrino?
 - Accelerator-based beams are always a mixture of both
 - Atmospheric neutrinos are also a mixture
 - Reactors and the sun are only one or the other

$$N(E_{\nu}) = \Phi(E_{\nu})\sigma(E_{\nu})\mathsf{M}\epsilon(E_{\nu})$$

 $N = \Phi \sigma M \epsilon$

Measuring Oscillation Probabilities

For a given number N_{β} of v_{β} events in a detector, If you are starting with a source of v_{α} : look for

$$N_{\beta}(E) = \Phi_{\alpha}(E)P_{\alpha \to \beta} \left(\frac{L}{E}\right)\sigma_{\beta}(E)M\epsilon_{\beta}(E)$$

 ϕ =flux, σ = cross section ϵ =efficiency M=detector mass

Simple, right?

Neutrino Sources

- Key Parameters:
 - Flux
 - Energy
 - Baseline(s) available
 - Neutrino Beam Flavor and Helicity Composition
 - Are there matter Effects?
 - What do the neutrinos travel through between production and detection

14-15 July 2022

Deborah Harris, York/Fermilab: Neutrino Experiments

Neutrinos from a Reactor

• What happens when a nucleus breaks apart?

neutrinos/MeV/fission

Reactor Energy Spectrum

- Several processes occurring during the fuel cycle of a reactor, with different yields and energy spectra
- One complex may have several cores, not all at the same point in their fuel cycles, not at same distance
- Different cores may turn on and off, rare for all cores to turn off at once

Baselines $P_{\bar{v}_e \to \bar{v}_e} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\Delta m_{31}^2 L / 4E \right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\Delta m_{21}^2 L / 4E \right)$

- Reactors send out neutrinos in all directions, detector location depends on local geography
- Different physics can be reached at different baselines

Extreme Example of Long baseline

• Kamland experiment: saw neutrinos from large array of reactors in Japan

Shorter Baselines used

Daya Bay: 3 cores, 3 halls, baselines of 1.6-2.0km

Reno: 6 reactor cores, 2 halls, baseline(s) ~1.3km

Double Chooz: 2 cores, 2 halls at 0.4 and 1.0km

What about SNO+ and reactors in Canada?

• SNO+ in Sudbury, ON is a detector that is sensitive to reactor neutrinos...

Atmospheric and Accelerator $\nu^\prime s$

- Atmospheric Neutrino Beam:
 - High energy protons strike atmosphere
 - Pions and kaons are produced
 - Pions decay before they interact
 - Muons also decay

Deborah Harris, York/Fermilab: Neutrino Experiments

Example: NuMI beamline at Fermilab

- Proton Beam
- Pion Production Target
- Focusing System
- Decay Region
- Absorber
- •Shielding...

Most v_{μ} 's from 2-body decays: $\pi^{+} \rightarrow \mu^{+} v_{\mu}$ $K^{+} \rightarrow \mu^{+} v_{\mu}$ Most v_{e} 's from 3-body decays: $\mu^{+} \rightarrow e^{+} v_{e} v_{\mu}$ $K^{+} \rightarrow \pi^{0} e^{+} v_{e}$

Neutrino Production Targets

- Have to balance many competing needs:
 - The longer the target, the higher the probability the protons will interact

- The longer the target, the more the produced particles will scatter
- The more the protons interact, the hotter the target will get targeting above ~1MW not easy!
- Rule of thumb: want target to be 3 times wider than +- 1 sigma of proton beam size

What focusing works best?

- Imagine particles flying out from a target:
 - When particle gets to front face of horn, it has transverse momentum proportional to radius at which it gets to horn

B Field from line source of current is

in the Φ direction

but has a size proportional to 1/r

How do you get around this? (hint: $\,\partial pt \propto B \times \,\partial l\,$)

What should the B field be?

- Make the particles at high radius go through a field for longer than the particles at low radius. (B \propto 1/r, but make dl \propto r²)
- Horn: a 2-layered sheet conductor
- No current inside inner conductor, no current outside outer conductor
- Between conductors, toroidal field proportional to 1/r

Horn Photo Album

	Length (m)	Diameter (m)	# in beam
К2К	2.4,2.7	0.6,1.5	2
MBooNE	~1.7	~0.5	1
NuMI	3,3	0.3,0.7	2
CNGS	6.5m	0.7	2
Т2К	1.4,2,2.5	.47,.9,1.4	3

Need enormous currents: 200-300 kA!

14-15 July 2022

Deborah Harris, York/Fermilab: Ne

Off-Axis Technique

- 1-1 relationship between neutrino energy and pion energy+angle between neutrino and pion
- Off axis neutrino beams: aim pions and kaons AWAY

from detector

- Ref: D. Beavis et al, BNL No. 52459, 4/95
- T2K and NOvA both use this

Oscillation Neutrino Source Summary

Source	Flux	v Energy	Composition	Baseline	Matter Effects?
Sun	6x10 ¹⁰ v/cm²/sec	0.1-10MeV	ν _e (ν ₂)	10 ⁸ km	yes
Reactor	10 ²⁰ v/sec/GW	1-10MeV	Anti- v_e	1-180km	Technically no
Atmosphere	1 v/cm²/sec	0.1-10 ⁴ GeV	$\nu_{e}\text{+}\nu_{\mu}\text{and}\text{anti-}$	80-10 ⁴ km	yes
Accelerator	18x10 ⁵ v/cm²/sec @1km*	0.1-100GeV	$ u_{\mu}$ +% $ u_{e}$ or anti- $ u_{\mu}$ +% $ u_{e}$	1-1000km	yes

* NuMI beamline, "Medium Energy Tune"

Group Work

- Let's say that there was evidence for electron antineutrino appearance from Pion Decays at rest $(\pi \rightarrow \mu \nu_{\mu})$.
- Let's say that the measurement implied a mass squared splitting that was >> 25x larger than the sum of the atmospheric and solar neutrino mass splitting:
- How might you confirm or refute this evidence?
 - Reactor Source
 - Accelerator Source

LSND, Phys.Rev.D 64 (2001)

Neutrino Interactions

So we have a neutrino source, now what?

Energies useful for oscillation measurements range from 1MeV to 100GeV!

Reminder from Last Week's Lectures

• July 5 lecture from Andrew Leprowski:

• He calculated the cross section:

$$\sigma(\bar{v}p^{\dagger} \rightarrow e^{\dagger}n) \sim \frac{1}{E_{cm}} G_F^2 E_{cm} \sim G_F^2 E_{cm} \sim G_F^2 2m_F^2 C_m$$

- Then talked about problems with the high energy limit
- But there's more to it than that...especially at low energies

Thresholds and Processes

- We detect neutrino interactions only in the final state,and often with poor knowledge of the incoming neutrinos
- Creation of that final state may require energy to be transferred from the neutrino

- In charged-current reactions, where the final state lepton is charged, this lepton has mass
- The recoil may be a higher mass object than the initial state, or it may be in an excited state K. McFarland, INSS 2013

Thresholds and Processes at Very low energy

Process	Considerations	Threshold (typical)
vN→vN (elastic)	Target nucleus is often free (recoil is very small) CE v NS!	none
v _e n→e⁻p	In some nuclei (mostly metastable ones), this reaction is exothermic if proton not ejected	None for free neutron
ve→ve (elastic)	Most targets have atomic electrons	~ 10eV – 100 keV
<i>v̄_e</i> p→e⁻n	$m_n > m_p \& m_e$. Typically more to make recoil from stable nucleus.	1.8 MeV (free p). More for nuclei.
v _ℓ n→ℓ⁻p (quasielastic)	Final state nucleon is ejected from nucleus. Massive lepton	~ 10s MeV for ν_e +~100 MeV for ν_μ
v _ℓ N→ℓ ⁻ X (inelastic)	Must create additional hadrons. Massive lepton.	$^{\sim}$ 200 MeV for ν_{e} +~100 MeV for ν_{μ}

• Energy of neutrinos determines available reactions, and therefore experimental technique

K. McFarland, INSS 2013

Neutrino Electron Elastic Scattering (reprise)

- Elastic scattering:
 - $\nu_{\mu} + e^- \rightarrow \nu_{\mu} + e^-$
 - Recall, EW theory has coupling to left *or* righthanded electron
 - Total spin, J=0,1
- Electron-Z⁰ coupling
 - Left-handed: $-1/2 + \sin^2 \theta_w$

d,*s*,*b*

$$\sigma \propto G_f^2 E_{cm}^2 \left(\frac{1}{4} - \sin\theta_W^2 + \sin\theta_W^4\right)$$

• Right-handed: $sin^2\theta_W$

$$\sigma \propto G_f^2 E_{cm}^2 (\sin \theta_W^4)$$

K. McFarland, INSS 2013

 $-1/2 + 1/3 \sin^2 \theta_{W}$

0

 $1/3 \sin^2 \theta_{W}$

Neutrino Electron Scattering, cont'd

 What are relative contributions of scattering from left and righthanded electrons?

 $d\sigma$

 $d\cos\theta$

= const

fLH

ν

Deborah Harris, York/Fermilab: Neutrino Experiments

What about v_e scattering off e's?

The reaction

 $\nu_{\mu} + e^- \rightarrow \nu_{\mu} + e^-$ has a much smaller cross-section than

 $\nu_{\rm e} + {\rm e}^- \rightarrow \nu_{\rm e} + {\rm e}^- \label{eq:velocity}$ Why?

 $\nu_e + e^- \rightarrow \nu_e + e^$ has a second contributing reaction, charged current

Although rate is higher for v_e , compared to v_{μ} or v_{τ} this channel hasn't been used for oscillations at accelerator-based long baseline experiments: why? K. McFarland, INSS 2013

14-15 July 2022

Deborah Harris, York/Fermilab: Neutrino Experiments

Consider this:

• How does the cross section for neutrino scattering off protons and neutrons compare to scattering off electrons?

 $\sigma \propto G_f^2 E_{cm}^2 \propto G_f^2 m_{target} E_{\nu}$

Scattering off protons and neutrons

- Imagine now a proton target
 - Neutrino-proton elastic scattering:

 $u_e + p \rightarrow v_e + p$ - "Inverse beta-decay" (IBD): $\overline{\nu}_{\rho} + p \rightarrow e^+ + n$

– and "stimulated" beta decay:

 $v_e + n \rightarrow e^- + p$

- IBD was the Reines and Cowan discovery signal
- Cross section much higher

 $\sigma \propto G_f^2 E_{cm}^2$

K. McFarland, INSS 2013 14-15 July 2022

Neutrino-Nucleon Scattering

cross

section

- Charged Current: W[±] exchange
 - Quasi-elastic Scattering: (Target changes but no break up) $v_{\mu} + n \rightarrow \mu^{-} + p$
 - Nuclear Resonance Production: (Target goes to excited state) $v_{\mu} + n \rightarrow \mu^{-} + p + \pi^{0}$ (N^{*} or Δ) $n + \pi^{+}$
 - Deep-Inelastic Scattering: (Nucleon broken up) v_{μ} + quark $\rightarrow \mu^{-}$ + quark'

Scattering off Nuclei

- The fundamental theory allows a complete calculation of neutrino scattering from quarks
- But those quarks are in nucleons (PDFs), and those nucleons are in a strongly interacting tangle
- Imagine calculating the excitations of a pile of coupled springs. Very hard in general.

K. McFarland, INSS 2013

Group Work

- For experiments looking for $v_{\mu} \rightarrow v_{e}$ oscillations in a v_{μ} beam :
- What are some possible backgrounds if you have a perfect detector?
- Is v-electron scattering a background? Why or why not?

Summary for Neutrino Interactions

- Total cross section proportional to neutrino energy
- \bullet Angular dependence because of ν helicity and conservation of spin
 - Consequence: Neutrinos have higher cross section than anti-neutrinos
- v-e scattering is the ONLY perfectly known cross section
- Everything else is more complicated:
- Dedicated cross section programs to help clarify the role the nucleus plays: MINERvA

• NEED THEORY PREDICTIONS!

- \bullet The higher the ν energy, the more final state particles produced
 - Need to understand how ν energy shows up in detector, AND backgrounds

Neutrino Detectors

What makes Neutrino Detectors special?

I know what you're thinking:

"Wait, I already learned everything I need to know about detectors from Ian Shipsey on Monday and Tuesday..."

- Neutrino beams are much larger than charged particle beams
- Neutrino cross section is very low, need large target mass
- Solution: make detector and target mass out of the same material
- Practical challenge: cost of making bulk material "active"

Oscillation Detector Goals

- Identify flavour of neutrino
 - Need charged current events!
 - Accelerator sources: Lepton Identification (e,μ,τ)
- Measure neutrino energy
 - Charged Current Quasi-elastic Events
 - In principle, all you need is the lepton angle and energy (*derive*)
 - Everything Else
 - Need to measure energy of lepton and of X, where X is the hadronic shower, the extra pion(s) that is (are) made..

 $P = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$

 $\nu p \rightarrow l^+ n$

 $vn \rightarrow l^- p$

 $\nu N \rightarrow l X$

Neutrino Oscillation Goals vs v Sources

- Reactor
 - Need to identify neutrino interaction (see the electron plus neutron tag)
 - Need to measure electron energy to deduce neutrino energy
- Atmosphere (v_{μ} , v_{e} and anti- v_{μ} , anti- v_{e})
 - Need to identify at least muons
 - \blacksquare Need direction of outgoing e or μ to know baseline
- Conventional Beams (v_{μ} , % v_{e})
 - Identify muon and electron in final state
- Thought question:
 - Do you need a magnetic field in your detector?
 - Depends on whether you need to distinguish v_{μ} , v_{e} from anti- v_{μ} , anti- v_{e}

Detectors and Backgrounds...

• Depending on your detector, you may see lots of things that look like signal but aren't...

Very Incomplete Survey of Neutrino Detectors

- Cerenkov Detectors
 - Water Cerenkov
 - Will cover "Ice Cerenkov" detector tomorrow
- Scintillator Detectors
 - Liquid Scintillator
 - Segmented scintillator
- Liquid Argon TPC

Cerenkov Detectors

Cerenkov Analogy with Sound

- What is a sonic boom?
 - Bang supersonique, boom sonico, estampido sónico
 - The noise that gets made when something goes faster than sound

Cerenkov Light

particle	p (threshold)
e	660keV
μ	137MeV
π^{\pm}	175MeV
K	650MeV
р	1300MeV

As **CHARGED** particles move faster than the speed of light in that medium, they emit a "shock wave" of light $e^{-v} = 1$

$\beta \equiv \frac{v}{c}$	$\beta > \frac{1}{n}$
$\theta_c = \cos^{-1}(1)$	$1/n(\lambda))$
	т

$$p_{threshold} = \frac{m}{\sqrt{n^2 - 1}}$$

- For water, n(280-580nm)~1.33-6, so p_{threshold}≈1.3*mass
- Threshold Angle: 42°

Deborah Harris, York/Fermilab: Neutrino Experiments

2GeV neutrino Interaction in SuperK 50m across 40m tall Water tank

Measuring Neutrino Energy

- Should be easy, right?
 - Assume neutron or proton at rest
 - IF you know initial direction of neutrino...

Λ/+

e

Final direction and energy of electron should suffice to get to the neutrino energy

$$E_{\nu}^{QE} = \frac{2\left(M_n - E_B\right)E_{\mu} - \left[\left(M_n - E_B\right)^2 + m_{\mu}^2 - M_p^2\right]}{2\left[\left(M_n - E_B\right) - E_{\mu} + \sqrt{E_{\mu}^2 - m_{\mu}^2}\cos\theta_{\mu}\right]}$$

$E_{\mu} = T_{\mu} + m_{\mu}$	Muon Energy			
M_n , M_p , m_μ	Neutron, Proton, Muon Mass			
EB	Binding Energy (~30 MeV)			
θμ	Muon Angle w.r.t. Neutrino Direction			

 $\nu_{\mu} + n \to \mu^{-} + p$ $\bar{\nu}_{\mu} + p \to \mu^{+} + n$

- Caveats:
 - lots of things that look quasi-elastic are NOT, if you can't see pions!
 - Need to include details on initial neutron momentum, binding energy, nuclear physics!

Deborah Harris, York/Fermilab: Neutrino Experiments

v_e

Scintillator Detectors

Deborah Harris, York/Fermilab: Neutrino Experiments

Anti-neutrinos in Scintillator

Neutron capture time ~ 30μ sec for typical θ_{13} experiments 14-15 July 2022

$$\neg + p \rightarrow e^+ + n$$

Scintillator Oil alone: capture the neutron on Hydrogen, make 2.2MeV gamma

Neutrino capture on Gd has advantages (compared with that on hydrogen):

- ✓ Higher total gamma ray energy (8 MeV)
- ✓ Shorter neutron capture time (~30 µsec vs. ~200 µsec)
- → Better signal to noise ratio

Segmented Scintillator (NOvA)

- PVC extrusions
 - 16m tall x 16m wide x 55m long
 - 3.9 cm transverse, 6.6 cm wide in beam direction
- All Liquid Scintillator
 - <u>85% scintillator</u>, 15% PVC

To Build:

Glue Planes of Extrusions together Rotate them from horizontal to vertical Fill Extrusions with Liquid Scintillator Each box gets a WLS fiber loop (bent at far end) Instrument WLS fibers with Advanced PhotoDiodes, repeat

54

Detector Volume

- Scaling detector volume is not trivial
- NOvA detector
 larger than
 ATLAS+CMS+
 CDF+D0
 together, at
 14kTon

Scintillator Events (2GeV)

Liquid Argon Time Projection Chamber

$\boldsymbol{\nu}$ and e Events in Liquid Argon

14-15 July 2022

Deborah Harris, York/Fermilab: Neutrino Experiments

Neutrino Detector Summary

Detector Technology	Largest Mass to	Event by Event Identification			+/-?	Ideal v Energy
	Date (kton)	ve	ν_{μ}	ντ		Range
Liquid Ar TPC	0.77	\checkmark	\checkmark		Not yet	huge
Water Cerenkov	50	\checkmark	\checkmark	√ **		<2GeV
	(or 1000*)					10-1000GeV*
Emulsion/Pb/Fe	0.27	\checkmark	\checkmark	\checkmark		>.5GeV
Scintillator++	14	\checkmark	\checkmark			huge
Steel/Scint.	5.4		\checkmark		\checkmark	>.5GeV

*if you include ICECUBE...

Moral of this story: how you measure a neutrino's energy varies greatly...

Measuring Oscillation Probabilities

$$N_{far} = \phi_{\nu_{\mu}} \sigma_{\nu_{x}} P(\nu_{\mu} \to \nu_{x}) \varepsilon_{x} M_{far} + B_{far}$$

 ϕ =flux, σ = cross section ϵ =efficiency M=mass

$$P(\nu_{\mu} \rightarrow \nu_{x}) = \frac{N_{far} - B_{far}}{\phi_{\nu_{\mu}} \sigma_{\nu_{x}} \varepsilon_{x} M_{far}}$$

B_{far}= Backgrounds at far detector, from any flux

$$B_{far} = \sum_{i=\mu,e} \phi_{V_i} (P) \sigma_{V_i} \varepsilon_{ix} M_{far}$$

Need to understand Signal and Background Cross sections, and efficiencies!

Uncertainties on Probabilities

$$\left(\frac{\delta P}{P}\right)^{2} = \frac{\left(N_{far} + \left(\delta B_{far}\right)^{2}\right)}{\left(\varphi_{\nu_{\mu}}\sigma_{\nu_{x}}\varepsilon_{x}M_{far}\right)^{2}} + \frac{N_{far} - B_{far}}{\left(\varphi_{\nu_{\mu}}\sigma_{\nu_{x}}\varepsilon_{x}\right)^{2}} \left[\delta(\varphi_{\nu_{\mu}}\sigma_{\nu_{x}}\varepsilon_{x})\right]^{2}$$
$$\left(\frac{\delta P}{P}\right)^{2} = \frac{\left(N_{far} + \left(\delta B_{far}\right)^{2}\right)}{\left(\varphi_{\nu_{\mu}}\sigma_{\nu_{x}}\varepsilon_{x}M_{far}\right)^{2}} + f\left(N_{far} - B_{far}\right) \left(\left[\frac{\delta \varphi_{\nu_{\mu}}}{\varphi_{\nu_{\mu}}}\right]^{2} + \left(\frac{\delta \sigma_{\nu_{x}}}{\sigma_{\nu_{x}}}\right)^{2} + \left(\frac{\delta \varepsilon_{\nu_{x}}}{\varepsilon_{\nu_{x}}}\right)^{2}\right)$$

3 Regimes:

$$N_{far} \gg B_{far}$$

 $N_{far} \approx B_{far}$
 $N_{far} \ll B_{far}$

Where we are now:

Reactor Experiments: low backgrounds, high statistics, need to focus on systematic uncertainties **Accelerator Experiments:** $N_{far} \ge B_{far}$ but now we are looking for the difference between ν and $\overline{\nu}$

Near Detector Strategy (in theory)

- Make two (or more!) detectors :
 - Near detector sees beam before oscillations
 - Far detector measures beam after oscillations
 - Require Neutrino Flavor and Neutrino Energy measurement
 - Correct for " $1/r^{2}$ " of beam, solve for oscillation

Near Detector Strategy (in practice)

$$B_{far} = \int dE_{v} \sum_{i=\mu,e} N_{near,i}(E_{v}) \left(\frac{\int \phi_{v_{i} far} \sigma_{v_{i}} \varepsilon_{ix}(E_{v}) dE_{v}}{\int \phi_{v_{i} near} \sigma_{v_{i}} \varepsilon_{ix}(E_{v}) dE_{v}} \right) \frac{M_{far}}{M_{near}}$$

- But ratios don't cancel everything
- Underlying problem: fluxes may be different
 - "1/r²" only works for a point source
- Also, $\nu_{\mu}\text{CC}$ oscillations may create change on TOP of what you are trying to measure
- All of these terms are functions of energy
 - Uncertainties in energy dependence of cross sections translate into far detector uncertainties...

Current Results and Next Steps: Reactor Neutrino Example

Taken mostly from Neutrino 2022

What do reactor experiments see?

 $N = \Phi \sigma M \epsilon$

- Flux at reactors falls with energy
- Cross section rises with energy

Precision Disappearance of Reactor Neutrinos

Reactor Constraint on Oscillation Parameters

Next Steps in Reactor Experiments

- JUNO: not just an award that Drake and Allison Russell received....
- JUNO: Reactor \bar{v}_e 's + 20kton Liquid Scintillator
- Goal is to measure whether mass ordering is inverted or normal
- How can it do this?
- Consider "largest mass splitting" from v_{μ} disappearance

$$P_{\overline{\nu}_e \to \overline{\nu}_e} = 1 - \sin 2\theta_{13}^2 \sin \left(\frac{\Delta m_{13}^2 L}{4E}\right)^2$$

• Now consider "largest mass splitting" from v_e disappearance:

$$P_{\nu_{\mu} \to \nu_{e}} = \sin 2\theta_{13}^{2} \sin \left(\frac{\Delta m_{23}^{2} L}{4E} \right)$$

20kton Liquid Scintillator

What this means in practice...

- Remember, neutrino mass splittings differ by a factor of 30!
- Need Fantastic Energy Resolution, high statistics, and precise calibration

Tomorrow....

- Accelerator-Based Oscillation Measurements
 - Current Results
 - Next steps
- Absolute Neutrino Masses
- Are Neutrinos their own Antiparticles?