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SNO+ Neutrino Detector

Outline for 20 minutes 
1. About me & neutrinos 
2. Image of particles 
3. Application of DNNs 
4. Summary

Neutrino physics since college :)



Me: Neutrino Physicist
• Neutrinos? 
-  Least Understood elementary particles 
-  They are everywhere 
‣  400 trillion neutrinos pass your body every second 
‣  Your body generates ~340 million neutrinos a day 

Our Sun emits  

10 38 neutrinos per second



Me: Neutrino Physicist
• Neutrinos? 
-  Least Understood elementary particles 
-  They are everywhere 
‣  400 trillion neutrinos pass your body every second 
‣  Your body generates ~340 million neutrinos a day 

-  They come from everywhere

Sun Atmospheric Earth

ReactorAccelerator Good Stuff

EPJ H37 (2012) 3:515-565
Big Bang SuperNova AGN

Our Sun emits  

10 38 neutrinos per second



Detecting Neutrinos: Today
Liquid Argon  

Time Projection Chamber 
Digitized, many  mega-pixel 

photograph of particles
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photograph of particles



Detecting Neutrinos: Today
Type-A 

Multiple 2D Projections 
Main stream in neutrino LArTPC 

detectors, require data 
reconstruction for 3D imaging



Detecting Neutrinos: Today
Type-B 

3D Imaging Detector 
Next generation LArTPC, currently 

R&D on-going



Analysis Goals
• Find neutrino interaction vertex 
• Identify neutrino type 
•  Reconstruct neutrino energy



How may I help  
LArTPCs?

NCπ0
CCQE

CC1π
DIS..!

Outline for 20 minutes 
1. About me & neutrinos 
2. Image of particles 
3. Application of DNNs 
4. Summary



Image Classification by DNNs
DNN has been the driver for the recent advancement in 
computer vision, the first breakthrough in image 
classification tasks (clearly better than me).

Jaguar

Leopard

For my reference
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From 2012 AlexNet 
Today’s results much better



Image Classification for Physics Analysis
NOvA Neutrino 
Event Topology NEXT 

Signal vs. Background

MicroBooNE 
Signal/Background

MicroBooNE Particle ID

e γ µ π
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Beyond Image Classification
Wide variety of applications: classification, detection, 
pixel-level component analysis, natural language 
processing
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Application for Physics Analysis

Yellow: “correct” 
bounding box 
Red: by the network

Network Output 
≃ 2.6m (width) x 1 m (height) MicroBooNE 

Simulation + Data Overlay

νµ

arxiv:1611.05531

• Object detection technique applied to localize neutrino 
interaction region in MicroBooNE data 

• DNNs for “feature mining”
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Pixel-level Identification of Electrons

νe
proton

e-

Network Input Network Output



Extra: Qualitative Analysis

µ
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Extra: Qualitative Analysis



Extra: Qualitative Analysis
Region 1 
• Mask all pixels but a small fraction of 

trajectory. Inspected how the network 
response changes as a function of 
trajectory length



Extra: Qualitative Analysis
Region 2 
• Mask all pixels but a small fraction of 

trajectory. Inspected how the network 
response changes as a function of 
trajectory length where dE/dX is high.



Extra: Qualitative Analysis
Region 3 
• Mask all pixels but a small fraction of 

trajectory. Inspected how topological 
difference affect the pixel score, and 
correlation to neighboring pixels.



Feature Space Point Finding

νe
proton

e-

Network Input Network Output21



Application for 3D 
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Input Done! Now here!

Where We’re Heading Toward
Full Reconstruction Chain 
• Individual particle clustering  
•  Trajectory reconstruction 
• Topology classification 
• Particle hierarchy analysis

Support from U.S. DOE/NSF 
•  DOE Early Career Award 
•  DOE ML@SLAC pilot program 
•  Many data science initiatives



Interdisciplinarity / Synergy

Cryo-EM 3D data labeling

ATLAS Jet Image Instance-Segmentation

Lots of collaborative effort 
to develop and share tools, 

experience, and holding 
workshops for training 
across national labs & 

universities. 
This workshop is great :)

Fast Analysis 
Gravitational 

Lensing 
(LSST)

Accelerator Operation/Maintenance



… Wrapping Up …
• Particle imaging detectors are in the core of 
experimental accelerator neutrino physics program 

• Computer vision techniques are strong tools 
• Collaborative development of applications based on 
machine learning, in particular deep learning, is 
active across and beyond particle physics community.

Thank you!
Please come and talk to me 
if you have questions / etc.
Some technical jargons
CNN, RNN, GAN, Graph-CNN,  
Mask R-CNN, U-Net, ResNet,  
Reinforcement Learning, MXNet, PyTorch, TensorFlow



speaker I talked about applying 
Machine Learning 
technique, in particular 
Deep Learning, to Particle 
Imaging detector  
Data Reconstruction

Back Up Slides
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Smiling 
Women

Neutral 
Women

Neutral 
Man

Smiling 
Man

vector arithmetic 
of visual concept 
arXiv:1511.06434

find 
nu’s!

… more exciting projects …

https://arxiv.org/pdf/1511.06434.pdf


SBND Cosmic Rejection w/ U-ResNet

Collection plane view,  
similar performance  
on induction planes 

(from C. Adams)



Our Input
Each “pixel” is the integrated ADC response in that time/
space slice. These maps are chosen to be 500 wires long 
and 1.2ms wide (split into 500 time chunks). 

Alexander Radovic Deep Learning at DUNE 6Alexander Radovic Deep Learning at DUNESlide 1/3 from A. Radovic

DL @ DUNE FD 
Analysis



NuMu Selected Events, 
Reconstructed Energy Spectra

NuMu Appeared 
NuE Beam NuE NC NuTau

Efficiency 80.6

Rejection 99.0 98.7 97.6 81.5

NuMu Appeared 
NuE Beam NuE NC NuTau

Efficiency 87.7

Rejection 99.6 99.3 98.3 81.4
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Alexander Radovic Deep Learning at DUNE 13

Work in progress Work in progress

Slide 2/3 from A. Radovic

DL @ DUNE FD 
Analysis



NuE Selected Events, Reconstructed 
Energy Spectra

Appeared 
NuE NuMu Beam NuE NC NuTau

Efficiency 67.5

Rejection 99.8 52.1 98.6 85.8

Appeared 
NuE NuMu Beam NuE NC NuTau

Efficiency 79.3

Rejection 99.9 48.2 98.8 87.6
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Alexander Radovic Deep Learning at DUNE 15

Work in progress Work in progress

Neutrino Beam Anti-Neutrino Beam

Slide 3/3 from A. Radovic

DL @ DUNE FD 
Analysis



n-nbar Search in DUNE FD



n-nbar Search in DUNE FD



n-nbar Search in DUNE FD

FPGA Implementation 

R&D for online trigger



Distributed CNN Training at PNNL 
E. Church, J. Daily, C. Siegel, M. Schram, J. Strube, K. Wierman

March 30, 2018 35

Full event image: 3600 wires x 3600 time bins x 3 planes x 4 Bytes 
MicroBooNE simulated single particle events 
~150 MB / event 

Even a moderately small network only leaves room for a mini-batch size of 
1-2 events on a modern GPU, for full event fidelity 

This is smaller than required given the latent space of the CNN → slow 
development. Distributed scaling of compute resources will help significantly. 
Scaling allows increase in network depth too (if required) 

For deep learning, one wants large training samples. 
Training may become quickly I/O bound and hence prohibitively slow 
Even a dedicated ”large-mem” node cannot fit more than a few thousand samples 
into memory, at best. 

➞ We are studying PNNL’s MaTEx for distributed training 
 Easier to ”drop in” than say the uber solution, and locally supported! 
➞ And using in-memory loss-less image compression

Slide 1/2 from E. Church
DL Software @PNNL 

Framework Development



Current status (preliminary)

March 29, 2018 36

Training time: mini-batch size = 2, 10000 steps per GPU … 10 epochs 
Identical networks, loss functions, optimizers and input data 
➞ MaTEx does not currently introduce noticeable overhead at this scale 

For the same wall time, training improves with number of GPUs 
➞ Studies ongoing, significant updates planned for CHEP2018 

Slide 2/2 from E. Church
DL Software @PNNL 

Framework Development



More Exciting Stuffs … come chat w/ me :)
3D voxel labeling of Cryo-EM image 

(below: mitochondrion detection)

Detection + Clustering (Mask R-CNN) 
of ATLAS jet images  

(w/ SLAC ATLAS group)

Multi-network Training 
Techniques R&D

Pixel-Flow network for 3D track reco  
(via cross-plane pixel correlation)



Why Neutrinos



Standard Model (SM) 
Successful description of how we 
know particles interact in nature 
… but not so much on neutrinos!
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Neutrinos beyond SM 
With neutrino oscillations firmly in place, we know at least there 
are 3 mass eigenstates. But there is much more to learn…

νe νµ ντ

Why Neutrino Physics? (I)

Mass hierarchy 
m1 > m3?

CP violation Sterile neutrino?

νe νµ

ντ ν?
ν1

ν3
?



SuperNova

Sun Atmospheric

AGN

ReactorAccelerator

Earth

Good Stuff

Relic Neutrinos

Neutrinos are everywhere 
Which makes them natural probes to the universe and its history

Why Neutrino Physics? (II)

Need to understand more about them! 
Oscillation physics has taught us a lot, but still much to learn…

EPJ H37 (2012) 3:515-565

40



My Interest: ML Applications
Reconstruction chain using DNNs 
• Design DNNs for key feature extraction 
-  Interaction vertex, particle clustering, type 

identification, hierarchy reconstruction, etc. … 
• Chain them up: optimize the whole process 
-  Still extracts key individual features. 
-  Leaves flexibility to implement some tasks without 

using DNNs.

41

Clustering 
+ Particle ID

Muon

Proton
Is neutrino here?

Detect interaction 
and classify type

νµ + n ➞ µ + p



Detectors 



Detecting Neutrinos: BMB
We cannot observe neutrinos, but we can detect 
particles that come out of a neutrino interaction.

νµ

Bubble Chamber 
Analog photographs to record 
trajectory of charged particles



Eνolution of Detectors

Inverse Beta Decay (IBD) 
νe + p → e+ + n 

by Reines & Cowan (Nobel Prize 1995)

Cd-doped water 
0.4 ton, 100 PMTs

Neutrino Oscillation Experiments (I)

First neutrino detection
44



Neutrino Oscillation Experiments (I)

KamiokaNDE Detector 
3 kton ultra-pure water, 1000 20” PMTs 

(shared Nobel Prize 2002)

Cd-doped water  
0.4 ton, 100 PMTs 

(1956)

Birth of neutrino  
astrophysics!

45

Eνolution of Detectors



Neutrino Oscillation Experiments (I)

Cd-doped water  
0.4 ton, 100 PMTs 

(1956)

Ultra-pure water 
3 kton, 1000 PMTs  

(1983)

Super-KamiokaNDE 
50 kton ultra-pure water,  

11000 PMTs 
(shared Nobel Prize 2015)

Discovery of 
νatmo oscillation!

46

Eνolution of Detectors



Neutrino Oscillation Experiments (I)

Cd-doped water  
0.4 ton, 100 PMTs 

(1956)

Ultra-pure water 
3 kton, 1000 PMTs  

(1983)
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Ultra-pure water 
50 kton, 11000 PMTs  

(1996)

Discovery of 
νsolar oscillation!

SNO 
1 kton heavy-water Cherenkov,  

9600 PMTs 
(shared Nobel Prize 2015)

Eνolution of Detectors



Neutrino Oscillation Experiments (I)

Cd-doped water  
0.4 ton, 100 PMTs 

(1956)

Ultra-pure water 
3 kton, 1000 PMTs  

(1983)

KamLAND 
1 kton liquid scintillator, 1900 PMTs 

My first neutrino experiment  
(undergraduate RA @ UC Berkeley)

Reactor neutrino 
oscillation! 

(the solar model is right!)
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Heavy water 
1 kton, 9600 PMTs  

(1999)

Ultra-pure water 
50 kton, 11000 PMTs  

(1996)

Eνolution of Detectors



Neutrino Oscillation Experiments (I)

Gd-doped liquid scintillator 
RENO, Daya Bay, Double Chooz

Liquid Scintillator 
1 kton, 1900 PMTs  

(2002)

“Near” & “Far” design 
2 x 16 ton detectors with 400 
PMTs each (Double Chooz) 
My Ph.D thesis! (MIT)

“Last mixing angle”  
θ13 Experiments!
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Cd-doped water  
0.4 ton, 100 PMTs 

(1956)

Ultra-pure water 
3 kton, 1000 PMTs  

(1983)

Heavy water 
1 kton, 9600 PMTs  

(1999)

Ultra-pure water 
50 kton, 11000 PMTs  

(1996)

Eνolution of Detectors



Neutrino Oscillation Experiments (I)

Water Cherenkov Detector 
Super-Kamiokande50



Water Cherenkov Detector 
Super-Kamiokande

Neutrino Oscillation Experiments (I)

51



Liquid Scintillator Detector 
KamLAND

Less topological information
but excellent energy resolution

Neutrino Oscillation Experiments (I)

52



Neutrino Oscillation Experiments (II)

How can we do better? 
Three important detector features for oscillation measurement

Large Mass 
(scalable)

Good Energy 
Resolution

Particle ID 
Capability

“More” statistics to measure 
rare physics process

Better ν identification 
background rejection

Precise Eν reduce 
oscillation uncertainty 

53
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Challenges



100 cm

10
0

 c
m

Cosmic Data : Run 6280  Event 6812  May 12th, 2016

55

There may be lots of backgrounds

Analysis Challenges
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100 cm

10
0

 c
m

Cosmic Data : Run 6280  Event 6812  May 12th, 2016

55 cm
Run 3469 Event 53223, October 21st, 2015 

≃ 14 cm x 14 cm

≃ 200 cm

Interaction vertex can be anywhere 
in LAr, varying in size (cm ~ meters)

Analysis Challenges



55 cm
Run 3469 Event 53223, October 21st, 2015 

νµ

p

µ

π?

Cosmics

Cosmics

Cosmics

57

Must identify event vertex 
+ neutrino interaction topology (particle types)

Analysis Challenges



58

Cluster energy depositions 
for an accurate calorimetry

Analysis Challenges



Deal with optical illusions in 2D projections + 
3D pattern recognitions

Analysis Challenges



NN & CNN 
Basics 

~ How Does It Work? ~

60



How Image Classification Networks Work
Goal: extract features to give “single label” to an image 
1. Convolution operation 
2. Down-sampling

Series of convolutions  
+ down-sampling

In
pu

t I
m

ag
e

After 
1st convolution

Discriminants

Down-sampling 
Feature Maps

After 
2nd convolution

After 
3rd convolution

61



Series of convolutions  
+ down-sampling

How Image Classification Networks Work
Goal: extract features to give “single label” to an image 
1. Convolution operation 
2. Down-sampling

In
pu

t I
m

ag
e

After 
1st convolution

Discriminants

Down-sampling 
Feature Maps

After 
2nd convolution

After 
3rd convolution
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“Written Texts” 
feature map

“Human Face” 
feature map



How SSNet Works
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eDown-sampling Up-sampling

feature
tensor

Intermediate, low-resolution 
feature map

Goal: recover precise, pixel-level location of objects 
1. Up-sampling 
-  Expand spatial dimensions of feature maps 

2. Convolution 
-  Smoothing (interpolation) of up-sampled feature maps



DNN for LArTPC Data Reconstruction

U-ResNet

How does 
U-ResNet Work?

Down sampling + Convolutions to identify 
highly abstract features (e.g. “human face”)

Interpolation filters 
(up-sampling) 
+ Convolutions 
(“learnable” filter)



Misc.



Response Study on Real Data
• Physicist labeled pixels, compared with DNN 
• Repeated procedure for real detector data and 
simulation sample. Validated response on real data


