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Computing Challenges in High Energy Physics
ATLAS CPU resource estimates  
(similar for CMS) 

Assuming flat budget and 20% 
technology advance per year 

CPU shortfall between needs and 
technology gains is about factor 4 in 
2027 

Situation for disk storage is even worse  
(Shortfall is about factor 7 in 2027) 

⇒ Critical conditions for HL-LHC

Physics will be limited by computing!
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(a) Estimated CPU resources (in kHS06) needed for the years 2018 to 2028 for

both data and simulation processing. The blue points are estimates based on the

current software performance estimates and using the ATLAS computing model

parameters from 2017. The solid line shows the amount of resources expected to

be available if a flat funding scenario is assumed, which implies an increase of 20%

per year, based on the current technology trends.
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(b) Estimated total disk resources (in PB) needed for the years 2018 to 2028 for

both data and simulation processing. The blue points are estimates based on the

current event sizes estimates and using the ATLAS computing model parameters

from 2017. The solid line shows the amount of resources expected to be available

if a flat funding scenario is assumed, which implies an increase of 15% per year,

based on the current technology trends.

Figure 4: ATLAS resources required into the HL-LHC era, using the current com-

puting model and software performance.[34]

therefore the physics reach during HL-LHC will be limited by how e�ciently these

resources can be used.

The ATLAS numbers, in Figure 4, are particularly interesting as they estimate

the resources that will be available to the experiment if a flat funding profile is

– 8 –

Alves et al., A Roadmap for HEP Software and Computing 
R&D for the 2020s, HSF-CWP-2017-001 (2017)
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Similar Challenges Ahead in Astroparticle Physics
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Machine Learning in HEP
Omnipresent in offline analyses for signal/
background classification (20 years+) 

Increasingly applied in offline and online 
reconstruction (real-time application) 

Flavour tagging (Classification of Jets) 

Particle identification 

Online event selection (LHCb trigger) 

Already utilized in core reconstruction 
algorithms at DUNE (Neutrino Physics) 

Full reconstruction of B mesons at Belle 
using NeuroBayes was developed at KIT ML experience available at KIT
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Software Evolution
Detector simulation utilizes most CPU cycles  
⇒ fast simulation (parameterized simulation) 

Increased demand for CPU cycles in 
reconstruction tasks at HL-LHC 
⇒ Need an (r)evolution of algorithms 

Exploit technologies of modern CPUs 
SIMD ⇒ Data Oriented Programming 
Muli-core / Many-core / GPU support 

Machine Learning / Deep Learning 
Under evaluation in fast simulation 
Further application at reconstruction level  
(pattern recognition / object classification)

Example by:

LCD Calorimeter
• CLIC is a proposed CERN project for a linear accelerator of electrons and positrons to TeV 

energies (~ LHC for protons) 

• Not a real experiment yet, so we) can simulate data and make it public.  

• Simpler geometry than ATLAS…  

• The LCD calorimeter is an array of absorber material and silicon sensors  comprising the 
most granular calorimeter design available  

• Data is essentially a 3D image 

• So far several million Pi0, Elec, ChPi, Gamma. 10 to 510 GeV. Low energy and Jet 
samples planned. 

• ECAL (25x25x25) / HCAL (5x5x60) “window”. Aux info: Energy, …  

• First studies, π
0

 vs γ classification with various DNNs by summer students.  

• Code/results not collected… but should be easy to redo. 

• New version of dataset.  

• Some visualization code exists… Full running example in CaloDNN. 

• Many interesting problems: PID Classification, Energy Regression, Shower generative 
models. 

The LCD calorimeter
• CLIC is a CERN project for a linear 

accelerator of electrons and 
positrons to TeV energies (~ LHC for 
protons) 

• The LCD is the detector design 
associated to the project 

• The LCD calorimeter is an array of 
absorber material and silicon 
sensors 

• So far, the most granular (i.e., more 
“pixels”) calorimeter design 
available 

4

A long way to an optimal network architecture

19

• From this first exercise, 
we still have sizeable 
improvement margin 
ahead 

• Planning for an 
extended 
hyperparameter 
optimization on the 
CSCS cluster in Lugano 

• Starting to work on 
regressions in parallel, 
with CERN/Caltech 
Summer students 

Calorimetry in one slide
• Most particles hitting a dense material develop a 

shower of particles  

• In this stochastic process, they loose energy, which 
is transmitted to the material 

• Properly instrumenting the material, this energy can 
be collected as an electronic signal and converted 
into an energy measurement 

• The shape of the shower is related to the nature of 
the particle 

• calorimeter fragmented in cells to allow particle 
identification from shower shape 

• each cell is a volume in space associated to an 
energy deposit

Electromagnetic 
shower (e, γ)

Hadronic shower 
(π, Κ, p, n, ..)
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Going beyond 10x: fast simulation

6

¤ In the best case scenario GeantV will give 10x speedup → not 
enough

¤ Improved, efficient and accurate fast simulation based on Deep 
Learning techniques 

Test on most 
time consuming 
detectors: 
calorimeters
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¤ In the best case scenario GeantV will give 10x speedup → not 
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calorimeters

KIT engaged in tracking algorithms and ML
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Utilize modern technologies: 

Caching on SSDs, etc. 

NVRAM 

GPUs, etc.
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WLCG today - more than 150 sites  
(not really economic compared to industry) 
Storage services are most expensive 
(Procurement and operation!) 
WLCG plans storage consolidation 
Reduce data centers: 𝓞(100) ⇒ 𝓞(10) 
More heterogenous compute resources 
ML fat nodes, opportunistic resources, etc. 
Remote data processing capability 
becomes more important 
Fast network links and data caches on 
volatile storage are mandatory

!7

Computing Model Evolution

10 - 100 Gb/s links

2018

Computing infrastructure in HL-LHC 

3/10/2016	Simone.Campana@cern.ch	-	ECFA2016	 13	

1	to	10	Tb	links	

Storage	and	Network	Backbone	2026		

10	to	100	Gb	links	

Storage	and	Network	Backbone	2016		

1	to	10	Tb	links	

Storage	

Storage	

Storage	

Compute	Compute	

Compute	

Compute	

cache	

cache	

cache	

Compute	

A	data	cloud	for	science		

Storage	and	Compute	loosely	

coupled	but	connected	through	a	

fast	network	

	

Heterogeneous	Compucng	

facilices	(Grid/Cloud/HPC/	…)	

both	in	and	outside	the	cloud		

	

Different	centers	with	different	

capabilices,	fo	different	use	cases			

WLCG	

Simone Campana, ECFA 2016
Caching technology is one key component!

2026
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High Performance through Coordinated Caching
Prototype developed in interdisciplinary doctoral 
thesis (Physics and Computer Science) 
Established new approach for user data analysis 
via distributed, coordinated caching on local SSDs 
Introduced data locality to HTCondor batch 
system 
Performance gain of factor 3-4 on typical recurrent 
end user data analysis payloads (prototype 
system) 
Third party funding for a production system was 
recently granted (hardware)

Batch 
System 

WN WN WN WN

Data

Coordinated Caches

Job

CMS Calibration Job Runtime

Runtime (s)
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[JOP608MF, JOP664MF, IARIA16MF, JOP762MF, JOP898MF, KITPhD16]
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GridKa High-Throughput Analysis Extension
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HTDA

GridKa Batch Farm
Knowledge transfer from R&D to the GridKa 
production system 

Include high throughput data analysis (HTDA) 
nodes into the GridKa batch farm 

Nodes can serve traditional WLCG jobs as 
well as HTDA user jobs profiting from caches 

Increase performance of typical recurrent end 
user data analysis payloads at GridKa 

Caching solution also well suited for recurrent 
ML trainings exploring different algorithms 

Evaluate performance impact of using pre-
placement strategies (Machine Learning?)
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Success Story - Opportunistic “Tier 1“ for a Day
Dynamically shared HPC Centre at 
Freiburg (three diverse communities) 

Virtualization is key component to: 

Allow dynamic resource partitioning 

Meet OS & software requirements 

ROCED cloud scheduler developed at KIT 

On-demand resource provisioning 

Transparent resource integration 

Suitable for CPU-intense workflows

[ACAT17MS, JOP898TH, JOP762TH, JOP664TH]
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Dynamic Compute Expansion of GridKa Tier 1
Transparent on-demand integration of 
opportunistic resources using ROCED 

Helix Nebula Science Cloud 
(based on traditional virtualization) 

KIT HPC Center (FORHLR II) 
(based on container technology) 

Automated detection and redirection of 
suitable CPU-intense workflows 

Evaluate ML for scheduling 
optimizations 

Jobs

Jobs

On-demand deployment

Jobs
VM pulls workload

WN pulls 
workload

monitors queue

KIT HPC Center

[JSSPP18MS]
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Caching Concepts on Opportunistic Sites
Opportunistic Resources usually well 
suited for CPU-intense workflows 

Many opportunistic sites offering fast 
cloud storage or distributed storage 

Benefit from caching R&D and bring 
recurrent I/O-intense workflows to the 
cloud 

Transparent data access also a hot 
topic in Helix Nebula Science Cloud

Worker Node

XRootD
Proxy

Remote Storage

Collaboration in developing a xrootd based 
caching proxy between KIT and GSI[ACAT17CH]
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Outlook - Cluster of Excellence Proposal
Algorithm Engineering for the Scalability Challenge (AESC) 

Ongoing proposal in the national Excellence Strategy 

Interdisciplinary research program at KIT  
(Computer science and application domains) 

Make algorithms ready for the big data and many-core era

Scheduling 
Algorithms

Caching 
Concepts

Workflow  
Management

Tracking  
Algorithms
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Associated Partners:

!15

Outlook - Innovative Digital Technologies for 
Exploring Universe and Matter

Joint proposal by HEP, Physics of Hadrons and Nuclei, Astroparticle Physics 
Covered Topics: 

Development of technologies to utilize heterogeneous computing resources 
(Integration of Opportunistic Resources, Caching Technologies, Workflow Management) 
Application and testing of those technologies in heterogenous computing resources 
Deep Learning - Achieving knowledge through profound data-driven methods  
(Hardware-related Data Processing, Object Reconstruction, Simulation, Quality of 
Network Predictions) 
Event reconstruction: Cost- and energy efficient utilization of computing resources 
(Alternative Algorithms and Architectures like GPUs) 

Proposal is reviewed in the scope of Digital Agenda programme (BMBF)
Proposal of:
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Publications
[JSSPP18MS] M. Soysal et al., Analysis of Job Metadata for Enhanced Wall Time Prediction, to be published (2018) 
[ACAT17MS] M. Schnepf et al., Mastering Opportunistic Computing Resources for HEP, to be published (2017)
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