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e Supercomputers in high energy physics
e Hamiltonian approach to lattice gauge theory
e Matrix product states

— Spectrum
— Chemical potential

e Conclusion




Large activity of theoretical lattice simulations
of the standard model of particle interaction

discretize space and time
use euclidean metric
Feynman path integral — statistical mechanical system

Lattice simulations of QCD, Higgs-Yukawa sector, Supersymmetry via
Markov Chain Monte Carlo Methods



German Supercomputer Infrastructure

e JUQUEEN (IBM BG/Q)
at Supercompter center Julich
5 Petaflops — 12 Petaflops (JUWEL)

“ JTUQUEEN ©

e HLRN (Hannover-Berlin)
Gottfried and Konrad
(CRAY XC30)

2.6 Petaflops

e Leibniz Supercomputer center Munich
combined IBM/Intel system SuperMUC
3 Petaflops



M[MeV]

The lattice QCD benchmark calculation: the spectrum

spectrum for Ny =2+ 1 and 2+ 1+ 1 flavours
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repeated by other collaborations
(ETMC: C. Alexandrou, M. Constantinou,
V. Drach, G. Koutsou, K.J.)

first spectrum calculation BMW

e spectrum for Ny =2, Ny =2+ 1 and Ny =2+ 1+ 1 flavours
— no flavour effects for light baryon spectrum



Markov Chain Monte Carlo (MCMC) Method

(O) = [ Dric1asOe™°/ [ Dpiclase™®

e needs real and positive probability
density measure Dpicjase >

e complex action not accessible to
standard MCMC

— chemical potential iUV
— O-term b, 5 Fps
(CP violation)

e constant error O(1) as
function of sample size NV

S[x4, X5] is complex
he(ZS[xl, X5] )

0.1  ~




Understanding QCD phase diagram

e only zero baryon density accessible

— understanding of phase transitions?
— early universe
— heavy ion experiments
— exotic regions of PD

Temperature T [MeV]

e do not understand origin
of todays universe

Nuclei Net Baryon Density




Real time evolution

e only thermal equilibrium accessible

—  no real time simulation

e understand real time processes in heavy ion collisions
— complicated sequence of transitions

e standard way: linearize equations
plus small fluctuations

e do we really understand
the involved transitions?

Hadron gas -
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Thermalization
Parton cascade
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CP violation

e in nature, we observe violation of
charge and parity symmetry

1P

— induces difference between =

particles and anti-particles
— asymmetry of matter and anti-matter
— allows that there are | Spin—Up Spin-Down
more baryons than anti-baryons Electron Positron

e leads to our sheer existence



CP violation from strong interaction?

CP-violation can originate from
electroweak and strong sector of standard model

do not understand amount of CP violation observed
estimtated matter anti-matter asymmetry: n = O(107 1)
electroweak interaction: 1 = O(1072%)

Lagrangian of strong interaction LOST PROPERTY
invariant under CP = ' =
) =

— complex “theta”-term: 0, 5, F s

can it explain the missing CP violation?
(and therefore the matter anti-matter asymmetry)

*Sorry Doc, we had a load of Anti-
Matter around 13 billion years age,
but it gat lost when we maved”

MCMC unable to answer this question



A solution to the sign problem: The Hamiltonian

e Hamiltonian approach has been much discussed in early stage of
lattice field theory (Kogut and Susskind, Wilson, Lischer, ...)

e Hamiltonian H spin-1/2 system

wavefunction |U >

|\IJ >= Z’Ll,’LQ, N} NCH 12, iN|i1i2 AN >

Ciy iy, iy coefficient matrix with 2% entries [ ’w

= becomes impossible ... very fast

= no practical solution to sign problem

e =~ 1980 Creutz performs Markov Chain Monte Carlo
— start of success story



Relevant part of Hilbert space is very small

e (surface) area law:
the entanglement between a subsystem and the rest
grows with the boundary of the subsystem (area in 3 dimensions)

e entanglement entropy in one diemsion:

— mass gap 1/&: S o« log(&)
— critical system of size L: S o log(L)

— exponential improvement
compared to S o< L

e for dimension d > 1: S o L¢! Al L

— area law

Area-law states

e how can we use this property? <



Matrix product states

A particular ansatz: matrix product state

d
‘\If >= E TrAzllA?A%thzN >
i17i27"'iN:1

e A, is D® D matrix — D bond dimension

e i; physical index (e.g. spin +1/2 for d =2 )



Bond dimension for ground state

approximation of ground state |Wy > with accuracy ¢/ L
minimal bond dimension D,,;, to reach ¢y/L

(6%
D in > const.];—o

= D scales polynomially

Hasting's theorem: for a gapped system
there is an exponential fast convergence
in the bond dimension D

(at least for ground state properties)

Many-body Hilbert space

1d Area-law states

D = 10M20

controlled and fast convergence to solution



Schwinger Hamiltonian from Jordan-Wigner transformation

discretizing and reformulation in a spin language

N-2 n s N—2 2
H=x Zn:() [0-7—”1; n—|—1 T Un O-n—l—l} Z [ <_1) Jn] - Zn:O (Ln - Oé)

& r = 9202

Gauss-law: L, — L, _1 = % oz + (—1)"]

= eliminate gauge degrees of freedom — pure spin formulation

e perfect formulation for matrix product states

e accessible for quantum simulators
(C. Muschik, M. Heyl, E. Martinez, T. Monz, P. Schindler,
B. Vogell, M. Dalmonte, P. Hauke, R. Blatt, P. Zoller, New J.Phys. 19 (2017) no.10, 103020)



Controlling systematic errors: bond dimension

e rapid convergence to infinite bond dimension
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e linear extrapolation in 1/D

e error: difference between extrapolated and largest bond dimension value



Calculating the mass spectrum in the Schwinger model

(M.C. Banuls, K. Cichy, I. Cirac, K.J.)

e reach values of x = 600 — MC-MC: z ~ 20

Vector binding energy
m/g | MPS with OBC | DMRG result exact

0 0.56421(9) 0.5642(2) | 0.5641895
0.125 | 0.53953(5) 0.53950(7) i
0.25 | 0.51922(5) 0.51918(5) i

0.5 0.48749(3) 0.48747(2) -

e vector case: agreement with and comparable accuracy to DMRG

Scalar binding energy
m/g | MPS with OBC | SCE result | exact
0 1.1279(12) 1.11(3) 1.12838
0.125 | 1.2155(28) 1.22(2) i
0.25 1.2239(22) 1.24(3) :
0.5 1.1998(17) 1.20(3) :

e scalar case: accurate determination of energy

e MPS approach works for gauge theories!



Sign problem in multi-flavour Schwinger model
(M.C. Banuls, K. Cichy, I. Cirac, S. Kiihn, H. Saito, K.J.)

e The goal: solve sign problem

e Analytical prediction for phase diagram (Narayanan)

3
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e chemical potential u;

1 1.5 2 25 3
Hy2n

e continuum calculation in finite volume

e prediction of first order phase transitions at 7' =10
for isospin chemical potential u; = 0.5,1.5, - --

e smooth behaviour for T' > 0



Location of phase transitions in massless case

change in particle number AN

energy in given phase F ATN,uI/ZW
= slope of E/ changes as function of 1

analytical prediction: no finite volume effect

asusual: D — oo, N = 00,z — 0
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e intersection point:
— location of jump

e no noticeable fse
e reproduce phase diagram

e no sign of sign problem



AN

use again I/ ATNW/QW

Location of phase transitions in massive case

no analytical solution available

observe finite size effects

prediction of phase diagram in iy — m plane
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AN

Location of phase transitions in massive case

use again I/ ATNM/QW
no analytical solution available
observe finite size effects

prediction of phase diagram in 11y — m plane
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Higher dimensions

Projected Entangled Pair States (PEPS)

(a) PEPS

11

PEPS are tensor networks for 2-d systems

used in solid state physics

computational cost oc DY — need new ideas for tensor networs ...

.. or quantum simulations



Summary

e lattice QCD calculations very much advanced
e outstanding challenges: chemical potential, CP violation, real time processes
e new ansatz: Matrix product states and matrix product operators

e testbench calculation: 1 + 1-dimensional Schwinger model

— spectrum
— chemical potential
— entropy

e overcomes sign problem

e challenge: higher dimensions

— quantum simulations
— talks by C. Muschik & M. Savage

e tensor networks still important tool to check quantum simulations



