### P-ONE — The Pacific Ocean Neutrino Explorer — TRIUMF 5y planning Matthias Danninger



# SIMON FRASER $\mathbf{UNIVE} \ \mathbf{R}_{1} \ \mathbf{S} \ \mathbf{ITY}$



## P-ONE — The current vision

P-ONE Collaboration, Nature Astronomy (2020)



Matthias Danninger | SFU 2022-02-24

Design inspired by existing experiments:

- Array of instrumented vertical lines (IceCube)
- Multi PMT optical sensors (KM3Net)
- Clustered deployment (GVD)

### <u>What is different?</u>

First Neutrino Telescope hosted by an existing large scale oceanographic infrastructure: **OCEAN NETWORKS CANADA** 

> SIMON FRASER **UNIVERSITY**













### OCEAN NETWORKS CANADA Discover the ocean. Understand the plan

Explorer Plate

**NEPTUNE Observatory** 

Clayoquot

Slope

250

Pacific **Plate** 

> Middle Valley 2400 m



Cascadia Basin 2660 m

Juan de Fuca Plate

Barkley Canyon 400-1000 m

- 2600m deep abyssal plain
- 2°C year-round
  - Low currents (0.1m/s)

➡ 840 km of underwater fibre optic cable

2022-02-24 | Matthias Danninger | SFU

### VENUS Observatory

VANCOUVER ISLAND



### Cascadia Basin node



An Initiative of the University of Victoria



### OCEAN NETWORKS CANADA Discover the ocean. Understand the plane

### One of world's largest and most advanced cabled ocean observatory

Ocean Networks"

### • NEPTUNE observatory:

- completed in 2009
- 800km loop of fibre optic cable, data flow and power infrastructure
- designed for long-lived, highly reliable underwater operations
- high-speed data link (10GB/s)
- high power (at least 9 kW/node)

➡ 840 km of underwater fibre optic cable 2022-02-24 | Matthias Danninger | SFU

VENUS Observatory

• "A gem in the Canadian research landscape is the infrastructure developed by

"plug and play" basis allowing a highly modular deployment and maintenance



An Initiative of the University of Victoria



## 2 P-ONE pathfinder missions (2018 & 2020)

- Interface, anchoring and deployment operation by ONC
- JINST 14, P02013 (2019) and EPJC 81, 1071 (2021)
- Goal Characterize optical properties
  - Key result 1: Excellent detector lifetime (98%)
  - Key result 2: Optical properties are good (attenuation length)
  - Key result 3: In-situ K40 background is understood
  - Key result 4: Bioluminescence activities as expected and stable













### --- P-ONE ----

# Next steps towards a neutrino observatory



2022-02-24 | Matthias Danninger | SFU





## P-ONE — prototype line (2023)

- Construction and deployment of a complete P-ONE mooring line
- Proof and verification of;
  - detector design
  - deployment techniques
  - positioning calibration (we aim to use optical position system)







**Optical Module** | In development | 16 pcs

Matthias Danninger | SFU 2022-02-24























## P-ONE — prototype line (2023)

- Construction and deployment of a complete P-ONE mooring line
- Proof and verification of;
  - detector design
  - deployment techniques
  - positioning calibration (we aim to use optical position system)



Calibration Module | Adapted POCAM | 4 pcs

2022-02-24 Matthias Danninger | SFU



### **Optical Calibration**

- Understanding ocean water is key to the success
- Synergy with IceCube but also HyperK















- Instrumented Volume ~1/8 km3
- Exploring physics potential for:
  - atm. neutrinos
  - moon shadow
  - ambient background
  - Galactic sources?

P-ONE Collaboration, Nature Astron. (2020) e-Print: 2005.09493

![](_page_8_Picture_14.jpeg)

![](_page_8_Picture_15.jpeg)

SIMON FRASER UNIVERSITY

![](_page_8_Picture_17.jpeg)

![](_page_8_Picture_18.jpeg)

![](_page_8_Picture_19.jpeg)

## Fast evolving collaboration and funding situation 10

Current funding:

P-ONE

- Prototype + 2 strings (Predominantly Europe + SFU JELF) —> Huge European funding success thus far (recent news)
- Planned funding rounds for 2022 (completes approx. 10 strings):
  - CFI-IF —> key infrastructure components (main junction box, mini JB, + 2strings) —> will **enable** a 10 string detector!
  - US funding for ~3-4 strings (similar timescale as CFI)
- - (SFU very likely to join this CFREF)

• McDonald Inst. followup CFREF lists P-ONE as one of 4 corner stones: Huge opportunity in terms of funding person power for both TRIUMF & SFU

![](_page_9_Picture_14.jpeg)

## Fast evolving collaboration and funding situation 11

### Huge interest from new groups in joining the collaboration:

- Several US IceCube institutes joining the US proposal Hardware interests as IceCube-gen2 might be "delayed" Physics interests in all sky-coverage, i.e. Galactic sources!!

- Eastern European groups (Slovakia, Czech Republic, Poland) from GvD-Baikal are in discussions of joining P-ONE
  - Political reasons for this move are of course awful

![](_page_10_Picture_7.jpeg)

![](_page_10_Picture_10.jpeg)

### The vision: from a single telescope (IceCube) to a multi network

<u>Assumption:</u> IceCube size detector at KM3NeT, GVD, and P-ONE location Impact:

- P-ONE will boost exposure to the Southern Sky by order of magnitudes • A global network will achieve excellent full sky coverage for high-E astrophysical neutrinos
- For Galactic sources a 10-string unit could have equivalent sensitivity as IceCube

![](_page_11_Figure_5.jpeg)

PoS(ICRC2021)1185

![](_page_11_Picture_7.jpeg)

- Astrophysical neutrinos discovered but unstudied
- Multi-messenger astronomy (neutrinos, gamma rays, optical, gravitational waves)
- Neutrino Astronomy! Neutrinos are key to understand Cosmic Ray puzzle and their cosmic and galactic accelerators
- Neutrino physics and particle physics in TeV and PeV range
  - Glashow resonance studies
  - Neutrino all flavour oscillations at high-energies (particle ID possible at P-ONE)
  - Sterile neutrino searches and neutrino properties
- Low energy neutrinos from core collapse Supernovae
- Indirect Dark Matter searches

**P-ONE** 

### The Science Case continued

![](_page_12_Picture_13.jpeg)

![](_page_12_Picture_14.jpeg)

![](_page_12_Picture_15.jpeg)

![](_page_12_Picture_16.jpeg)

![](_page_13_Picture_0.jpeg)

![](_page_13_Picture_1.jpeg)

- P-ONE seems on a strong path, but next years will be key!

P-ONE

2022-02-11 Matthias Danninger | SFU

• Support, interest, funding, and the Science case is growing rapidly in last 2 years

![](_page_13_Picture_6.jpeg)

![](_page_13_Picture_7.jpeg)

Extras

![](_page_14_Picture_1.jpeg)

Matthias Danninger | SFU TIPP 2021

![](_page_14_Picture_3.jpeg)

SIMON FRASER UNIVERSITY

![](_page_14_Picture_5.jpeg)

![](_page_14_Picture_6.jpeg)

![](_page_14_Picture_7.jpeg)

![](_page_14_Picture_8.jpeg)

## Key result 1: Attenuation length

- Measure Attenuation length in the water
- For different wavelength
- Constant over 2 years of measurements
- Optical properties are good!

![](_page_15_Figure_6.jpeg)

![](_page_15_Picture_7.jpeg)

![](_page_16_Picture_0.jpeg)

## Key result 2: <sup>40</sup>K in situ measurement

- Understanding the 40K background
- Natural in-situ calibration with K40 possible  ${}^{40}{
  m K} \rightarrow {}^{40}{
  m Ca} + e^- + ar{
  u}_e$
- Cross-check of  $_{\lambda_{att}}$  results, detector and site model

![](_page_16_Picture_5.jpeg)

SDOM PMT housing Geant4 model

![](_page_16_Picture_7.jpeg)

![](_page_16_Picture_9.jpeg)

![](_page_16_Picture_10.jpeg)

![](_page_17_Picture_0.jpeg)

- Understanding the 40K background
- Natural in-situ calibration with K40 possible  ${}^{40}{
  m K} 
  ightarrow {}^{40}{
  m Ca} + e^- + ar{
  u}_e$
- Cross-check of  $\lambda_{att}$  results, detector and site model
- Consistent results!

P-ONE

Salinity from this work: 2.5±1.4% Salinity from ONC: 3.482±0.001% Salinity at ANTARES site: 3.844%

![](_page_17_Picture_7.jpeg)

### Key result 2: <sup>40</sup>K in situ measurement

![](_page_17_Picture_12.jpeg)

## Key result 3: Bioluminescence as expected

![](_page_18_Figure_1.jpeg)

- Bioluminescence is modulated with the tides
- Constant over more than 2 years of operations —> no big bursts

The deep sea site of Cascadia basin is optically qualified to host P-ONE

2022-02-24 Matthias Danninger | SFU

P-ONE

![](_page_18_Picture_8.jpeg)

![](_page_18_Picture_9.jpeg)

![](_page_18_Picture_10.jpeg)

### Better characterization of Bioluminescence

![](_page_19_Picture_1.jpeg)

![](_page_19_Picture_2.jpeg)

![](_page_19_Picture_5.jpeg)

![](_page_19_Picture_6.jpeg)

![](_page_20_Picture_0.jpeg)

![](_page_20_Figure_1.jpeg)

![](_page_20_Picture_2.jpeg)

![](_page_20_Picture_3.jpeg)

2022-02-24 | Matthias Danninger | SFU

### Deployment was a 100% success!

- M. Boehmer et al JINST 14 P02013 (2019)
- Site characteristics <u>EPJ C 81, 1071 (2021)</u>

![](_page_20_Figure_9.jpeg)

![](_page_20_Picture_10.jpeg)

## Why another neutrino telescope?

More neutrinos, better neutrinos!

![](_page_21_Picture_2.jpeg)

as IceCube, GvD (Baikal), and KM3NeT —> we welcome collaboration/participation

• We aim for combined cross-calibration efforts to boost precision of all measurements at all neutrino telescope sites worldwide (POCAM, LiDAR, etc..) P-ONE | Matthias Danninger | SFU 2022-02-24

• P-ONE project has large emphasis on collaboration and complementarity with existing efforts such

![](_page_21_Picture_6.jpeg)

![](_page_21_Picture_7.jpeg)

![](_page_21_Picture_8.jpeg)

## Why another neutrino telescope?

- Horizontal coverage from which HE v will not be affected by the Earth absorption
- With IceCube +3 neutrino telescopes (similar size), current sensitivity to astrophysical neutrinos would be improved by up two orders of magnitude (gain depends on energy)!

![](_page_22_Picture_3.jpeg)

![](_page_22_Figure_4.jpeg)

![](_page_22_Picture_5.jpeg)

2022-02-24 Matthias Danninger | SFU KM3NeT, Sicily Galactic center/plane TXS 0506+056

![](_page_22_Picture_8.jpeg)

![](_page_22_Picture_9.jpeg)

![](_page_22_Figure_10.jpeg)

- Since 2013 Astrophysical neutrinos discovered
- 2018 Evidence for First source: Neutrino events in a direction of a flaring blazar, TXS 0506+056
- 2019 Very likely the first Glashow resonance observed
- Neutrino oscillation measurements at PeV scale!
- ....and so much more yet to be discovered

P-ONE

![](_page_23_Figure_7.jpeg)

![](_page_23_Picture_8.jpeg)

![](_page_23_Picture_9.jpeg)

![](_page_23_Picture_10.jpeg)

![](_page_23_Picture_11.jpeg)

![](_page_23_Picture_12.jpeg)

![](_page_23_Picture_13.jpeg)

### Why another neutrino telescope?

![](_page_24_Picture_1.jpeg)

![](_page_24_Picture_2.jpeg)

TIPP 2021 Matthias Danninger | SFU

**Conclusion slide from Francis** Halzen's talk at Int. Workshop on nu-telescopes (Feb 2021)!

neutrino astronomy 2021

more neutrinos, better

closing in on cosmic

icecube.wisc.edu

SIMON FRASER

![](_page_24_Picture_11.jpeg)

![](_page_24_Picture_12.jpeg)

![](_page_24_Picture_13.jpeg)

![](_page_24_Picture_14.jpeg)

![](_page_24_Picture_15.jpeg)

- Since 2013 Astrophysical neutrinos discovered
- 2018 Evidence for First source: Neutrino events in a direction of a flaring blazar, TXS 0506+056

![](_page_25_Picture_3.jpeg)

![](_page_25_Figure_5.jpeg)

![](_page_25_Picture_7.jpeg)

![](_page_25_Picture_8.jpeg)

![](_page_25_Picture_9.jpeg)

![](_page_25_Picture_10.jpeg)

![](_page_25_Picture_11.jpeg)

- Since 2013 Astrophysical neutrinos discovered
- 2018 Evidence for First source: Neutrino events in a direction of a flaring blazar, TXS 0506+056
- 2019/20 Very likely the first event at the Glashow resonance observed

![](_page_26_Picture_4.jpeg)

![](_page_26_Figure_6.jpeg)

![](_page_26_Picture_7.jpeg)

![](_page_26_Picture_8.jpeg)

![](_page_26_Picture_9.jpeg)

- Since 2013 Astrophysical neutrinos discovered
- 2018 Evidence for First source: Neutrino events in a direction of a flaring blazar, TXS 0506+056
- 2019/20 Very likely the first event at the Glashow resonance observed
- 2020 Neutrino oscillation measurements at PeV scale!

P-ONE

• ....and so much more yet to be discovered

![](_page_27_Figure_7.jpeg)

![](_page_27_Figure_8.jpeg)

| HESE with ternary topology ID                |
|----------------------------------------------|
| Best fit: $0.20 : 0.39 : 0.42$               |
| Global Fit (IceCube, APJ 2015)               |
| Inelasticity (IceCube, PRD 2019              |
| $3\nu\text{-mixing}\ 3\sigma$ allowed region |
|                                              |

| $ u_e: u_\mu$ | : $\nu_{\tau}$ at | source ·             | $\rightarrow$ on [ | Earth: |
|---------------|-------------------|----------------------|--------------------|--------|
|               | 0:1:0 -           | $\rightarrow 0.17$ : | 0.45:              | 0.37   |
| •             | 1:2:0 -           | $\rightarrow 0.30$ : | 0.36:              | 0.34   |
|               | 1:0:0 -           | $\rightarrow 0.55$ : | 0.17:              | 0.28   |
| •             | 1:1:0 -           | $\rightarrow 0.36$ : | 0.31:              | 0.33   |
|               |                   |                      |                    |        |

### SIMON FRASER UNIVERSITY

![](_page_27_Picture_12.jpeg)

![](_page_27_Picture_13.jpeg)

28

## Why another neutrino telescope?

![](_page_28_Picture_1.jpeg)

*image adapted from Elisa R.* 

![](_page_28_Picture_3.jpeg)

![](_page_28_Picture_4.jpeg)

![](_page_28_Picture_5.jpeg)

![](_page_28_Picture_6.jpeg)

![](_page_28_Picture_7.jpeg)

# Why another neutrino telescope?"

### AT HIGH ENERGY THE EARTH IS OPAQUE TO NEUTRINOS THE FIELD OF VIEW OF NTs (>50TEV): THE HORIZON

![](_page_29_Figure_2.jpeg)

IceCube Collaboration, "Measurement of the multi-TeV neutrino cross section with IceCube using Earth absorption P-UNL SIMON FRASER TIPP 2021 Matthias Danninger | SFU UNIVERSITY

![](_page_29_Picture_5.jpeg)

![](_page_29_Figure_6.jpeg)

![](_page_29_Picture_7.jpeg)

![](_page_29_Picture_8.jpeg)

![](_page_29_Picture_9.jpeg)

### Photons in ice and water

## HORIZONTAL HIGH ENERGY MUONS: THE SIGNATURE

1 PeV horizontal muon

medium: IceCube ice

![](_page_30_Picture_5.jpeg)

P-ON

K. Krings (TUM)

![](_page_30_Picture_8.jpeg)

![](_page_30_Picture_9.jpeg)

### MON FRASER IVERSITY

![](_page_30_Picture_11.jpeg)

![](_page_30_Picture_12.jpeg)

![](_page_30_Picture_13.jpeg)

![](_page_30_Picture_14.jpeg)

![](_page_30_Picture_15.jpeg)