

Nuclear Structure of Light Neutron-Rich Transition Metals

Moritz Pascal Reiter for the TITAN Collaboration

The Colorful Nuclear Chart Data: AME2016

N=28 N=32 N=34

- Mass Measurement of light transition metals
 - Region rich in nuclear structure
 - Development of shells features N=32, 34
 - N=40 Island of Inversion
 - Persistence of N=50

- Mass Measurement of light transition metals
 - Region rich in nuclear structure
 - Development of shells features N=32, 34
 - N=40 Island of Inversion
 - Persistence of N=50

 \rightarrow Testing our understanding of the nucleus

N=28 N=32 N=34

- Regarded as Non-ISOL beams
 - High ionization energy (6.5 to 9 eV)
 - Power full ion source / Laser ion source
 - Non-volatile elements (boiling point >2000 K)
 - High target temperature
 - \rightarrow Challenging low yield isotopes

U. Koester et al., Eur. Phys. J. Special Topics 150, 285–291 (2007)

ISAC RIB Facility

TITAN at ISAC

TITAN

TITAN

History of the project

- Design and constructed at University of Giessen (2014)
- Offline commissioning at TRIUMF (2016)
- Installation at TITAN late April (2017)
 - Routine operation since

- Low energy transport system for beam preparation
 - Ion trapping technology
 - Gas filled Radio Frequency Quadrupoles
 - Ion transport at $E_{kin} \sim 1 \text{ eV}$

- Measurement of mass-to-charge ratio by measurement of $E = \frac{1}{2}mv^2 = qeU$ $\Rightarrow \frac{m}{q} \propto t^2$ time-of-flight
- All ions (same q) have the "same" kinetic energy
- **Conventional TOF-MS achieve** medium mass resolving power and precision only
 - (path length of \sim m)

- Measurement of mass-to-charge ratio by **measurement of time-of-flight** $E = \frac{1}{2}mv^2 = qeU$
 - $\stackrel{Z}{\Rightarrow} \frac{m}{q} \propto t^2$
- All ions (same q) have the "same" kinetic energy
- Multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS)
 - (path length of ~ km)
 - Boost in resolving power (up to 500.000 FWHM)
 - Increased sensitivity by ~ 3-4 orders of magnitude over more traditional devices

M.P. Reiter et al., NIM B (2021) 165823

- Enables mass measurement
 - Establish yield of all species at once

24

Isobar separation

Mass-Selective
 Re-Trapping

Isobar separation

- Mass-Selective Re-Trapping
- Rate capability up to
 ~ up to 10⁶⁻⁷ pps
- Suppression ~ 10^4
- Separation power
 100.000 FWHM
- Operate is its own
 high resolution isobar
 separator

- First commissioning with stable beam from ISAC in May Demonstrate:
 - Isobar separation using mass selective re-trapping with suppression of ~ 10^4 at R~ 25.000

30

- First commissioning with stable beam from ISAC in May Demonstrate:
 - Isobar separation using mass selective re-trapping with suppression of ~ 10^4 at R~ 25.000

- First commissioning with stable beam from ISAC in May Demonstrate:
 - Isobar separation using mass selective re-trapping with suppression of ~ 10^4 at R~ 25.000

Some Experimental Highlights:

 To date ~350 isotopes measured over a wide range (many to be published)

The Colorful Nuclear Chart Data: AME2016

N=28 N=32 N=34

E. Leistenschneider et al., PRL 126 (2021) 042501

N=40 Island of Inversion

R. Silwal et al, PLB (2022) 137288

Nuclear Structure in light transition metals from masses AI 62305.83 cm⁻¹ IP 59959.560(10) cm^{-1} 67CO 68Co 69Co ⁷²Co CO OMey 42Co 63Co ofCo SCO CO GOT MAY ⁷⁰Co ⁷¹Co "Co "Co ⁵Co °Co Co °Co

R. Silwal et al, PLB (2022) 137288

- N=40 Island of Inversion
 - Discovery of a new isomer in ⁶⁹Fe right at the inversion point

- N=40 Island of Inversion
 - Discovery of a new isomer in ⁶⁹Fe right at the inversion point
 - Understand the new isomer based on
 Universal mean field calculations
 - Test predictive power to describe nuclear deformation

- Discovery of a new isomer in ⁶⁹Fe right at the inversion point
- At $a_{20} \sim 0.22$ the 43rd neutron occupies $p_{1/2}$ not $g_{9/2}$ as from spherical shell model
 - Allows single particle excitation into the close lying f_{5/2} or g_{9/2}

Neutron Number (N)

R. Silwal et al, PLB (2022) 137288

The Colorful Nuclear Chart Data: AME2016

- N=40 Island of Inversion
 - Full set of *Ab-Initio* calculation from **Ca to Ni**

Summary

- Mass measurements of light transition metals
 - possible due to new laser ion source developments at TRIUMF
 - Such as Ti, Cr, Mn, Fe, etc
- Combination of ISAC + TITAN
 - ightarrow Mass measurements at the outskirts of the nuclear chart
 - Internationally completive
 - Give insights into nuclear structure far from stability
 - Emerging of the N=32 & 34 neutron shell closure
 - Understanding of the N=40 island of inversion
- Close outlook
 - Push towards higher Z elements
 - Close in on N=50
 - Expand to the south
 - Looking at the N=20 Island of Inversion

• Region between ¹⁰⁰Sn and ¹⁵⁰Lu with rich nuclear structure

Colorful Nuclear Chart

- Region between ¹⁰⁰Sn and ¹⁵⁰Lu with rich nuclear structure
 - Fading of N=Z effects beyond ¹⁰⁰Sn in the south
 - Persistence of the N=82 up to the drip line in the north

Colorful Nuclear Chart

- Region between ¹⁰⁰Sn and ¹⁵⁰Lu with rich nuclear structure
 - Fading of N=Z effects beyond ¹⁰⁰Sn in the south _
 - Persistence of the N=82 up to the drip line in the north
 - In between region not well explored

<u>S1756</u> - Mass measurements of N=82 lanthanides isotopes around Z=70 (2017)

Thanks for the attention!

Nuclear Structure Theory

- Huge advances in nuclear theory
 - Quality and reach of Ab initio calculations
 - Refined chiral effective field theories and phenomenological calculations
 - Hugh predictive power
 Need to validated under extreme conditions (outskirts of the
 - nuclear chart) → Need of high
 - **quality nuclear data** (decay properties, masses, etc)

