

Recent highlights from the GRIFFIN spectrometer

Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei

Victoria Vedia Postdoctoral Researcher, TRIUMF

vvedia@triumf.ca

TRIUMF: Canada's National Laboratory for Acceleratorbased science

- 18 m in diameter 520 MeV proton beam
- o 4 beamlines

> 50 years of accelerator-based science and innovation

ISAC: Isotope Separator and ACcelerator

Gamma-Ray Spectroscopy at ISAC

GRIFFIN spectrometer

o 16 Clover HpGe detectors
o 4 HPGe crystals in each cryostat (addback)

Average Performance of all 64 crystals (16 clovers):Energy resolution@ 121keV =1.12(6) keVEnergy resolution@ 1.3MeV =1.89(6) keVPhoto-peak Rel. Eff. @ 1.3MeV =41(1) %

U. Rizwan et al., NIM A 820, 126 (2016)

GRIFFIN Compton and Background Suppression Shields

- All performance acceptance testing completed at Simon Fraser University
- Array has operated with full-suppression since June 2018.

Online hardware suppression now available in GRIF-C filter

17/07/2022

Victoria Vedia TRIUMF Science week

Gamma-Gamma Angular Correlation Analysis

J.K. Smith, A.C. MacLean *et al.* NIM A 922, 47 (2019). *https://arxiv.org/abs/1807.07570*

Development of $\gamma - \gamma$ angular correlation analysis techniques with GRIFFIN.

- Finite size and shape of crystals means theoretical distribution is attenuated.
- Obtain 'template' from high-statistics GEANT4 simulation
- Fit template to experimental data.

Ideally:

- Fit experimental data
- Plug coefficients into simple equations
- ^k Obtain corrected 'true' coefficients

Victoria Vedia TRIUMF Science week

Compton Polarimetry using GRIFFIN

Victoria Vedia TRIUMF Science week s

8

β

ISOBAR

 J^{π}_{ISOMER}

 $J^{\pi}_{\ GS}$

Enhances decay of interest

T_{1/2} Longer

 $\frac{1}{1/2}$ Shorter

GRIFFIN Ancillary Detectors

GRIFFIN reuses the full suite of ancillary detectors developed for the 8π spectrometer

HPGe: 16 Comptonsuppressed Clovers Detect gamma rays and determines branching ratios, multipolarities and mixing ratios

LaBr₃: 8 Comptonsuppressed LaBr₃ Fast-timing of photons to measure level lifetimes

Zero-Degree Fast scintillator Fast-timing signal for betas

PACES: 5 Cooled Si(Li)s Detects Internal Conversion Electrons and alphas/protons

SCEPTAR: 10+10 plastic scintillators Detects beta decays and determines branching ratios

DESCANT Neutron array Detects neutrons to measure betadelayed neutron branching ratios

SCEPTAR - SCintillating Electron-Positron Tagging ARray

- Two hemispheres of 10 plastic scintillators
- Detects beta particles with ~80% solid angle coverage
- Improves peak-to-background of HPGe spectra
- Reduces random background by ~5 orders of magnitude

PACES - Pentagonal Array for Conversion Electron Spectroscopy

- Five 5mm thick, 200mm² Si(Li), LN₂-cooled Si diode and FET
- Solid angle coverage: 1.4% each, 7% total
- 2 keV resolution for electrons

LaBr₃ Fast-Scintillator Array for Excited-State Lifetime Measurements

- Eight LaBr₃(Ce) 2"x2" cylindrical crystal
- Source-detector distance=12.5 cm. (unshielded) and 13.5 cm (with BGO shield)
- Fast beta scintillator (BC422Q).
- Hybrid analogue + digital electronics, excellent time resolution

BGO shield for each $LaBr_3(Ce)$

B. Olaizola et al. PRC 100,024301 (2019)

GRIFFIN+DESCANT

- 70 element array of deuterated scintillator for neutron detection covering $\sim 1\pi$ solid angle, (50cm flight path).
- Enables beta-gamma-ICE-neutron spectroscopy
- Five CAEN VX1730, 500MHz, 14-bit digitizers.
- Neutron-gamma discrimination from pulse shape and TOF
- GRIFFIN and DESCANT read out separately and events combined offline using timestamps. Used in S1602 beamtime in Aug 2019.

GRIFFIN DAQ System

A.B. Garnsworthy et al., NIM A 853, 85 (2017).

Custom Digital Electronics Modules designed and built by TRIUMF and Université de Montréal

GRIF-16 Module

16 chans 100MHz, 14bit

Primary and secondary Collector Modules • 625MB/s link to each digitizer • 1.25Gb/s link to data storage.

CAEN 500MHz, 14 bit digitizers used for DESCANT.

The GRIFFIN Spectrometer for precision decay studies at ISAC

Technical publications:

"Characteristics of GRIFFIN high-purity germanium clover detectors", U. Rizwan, *et al.*, NIM A 820, 126 (2016). arXiv:1711.05287

"The GRIFFIN data acquisition system", A.B. Garnsworthy *et al.*, NIM A 853, 85 (2017). arXiv:1711.06236

"The GRIFFIN Facility for Decay-Spectroscopy Studies at TRIUMF-ISAC", A.B. Garnsworthy et al., NIM A 918, 9 (2019). arXiv:1809.07183

"γγ angular correlation analysis techniques with the GRIFFIN spectrometer", J.K. Smith *et al.*, NIM A 922, 47 (2019). arXiv:1807.07570

griffin.triumf.ca

The GRIFFIN Spectrometer for precision decay studies at ISAC

Z = 82

GRIFFIN is a powerful decay spectrometer for nuclear structure, astrophysics and fundamental interaction studies.

N = 5(

¹⁶⁰⁻¹⁶⁶Eu, ^{156,158,160,162,166}Tm: Development of collectivity in rare-earth region

Z = 50

= 28

N = 20

¹¹⁸In: Intruder states at closed shellsK. Ortner *et al.*, PRC 102, 024323 (2020).

¹⁰C, ¹⁴O, ²²Mg, ⁶²Ga: Superallowed Fermi beta decays

A.D. MacLean *et al.*, PRC 102, 054325 (2020). M.R. Dunlop *et al.*, PRC 96, 045502 (2017).

Z =

^{31,32}Na, ³³⁻³⁵Mg, ³⁴AI:

Island of inversion

B. Olaizola *et al.,* PRC 100, 024301 (2019).

¹⁸⁸⁻²⁰⁰TI: Development of

collectivity in Hg isotopes

^{72,74,76,78,80,82}Ga, ^{72,74}Cu: Triaxiality and shape coexistence F.H. Garcia *et al.*, PRL 125, 172501 (2020).

^{46,47,50-54}K, ⁵⁰Ca: Single-particle and pair states near doubly-magic ⁴⁸Ca
J.K. Smith *et al.*, PRC 102, 054314 (2020).
J. Pore *et al.*, PRC 100, 054327 (2019).
A.B. Garnsworthy *et al.*, PRC 96, 044329 (2017). ^{228,230}Fr: Probing Octupole deformation and collectivity in Radium isotopes.

¹⁴²⁻¹⁵²La: Octupole collectivity and shape coexistence in Ce isotopes

^{145,146}Cs: β-delay neutron measurements with DESCANT, fast-timing with LaBr₃

¹²⁸⁻¹³²Cd, ¹²⁹⁻¹³³In:

Nuclear structure and r-process nucleosynthesis at the N=82 shell closure

F.H. Garcia *et al.*, Phys.Rev.C103,024310 (2021)
Y. Saito *et al.*, PRC 102, 024337 (2020).
K. Whitmore *et al.*, PRC 102, 024327 (2020).
R. Dunlop *et al.*, PRC 99, 045805 (2019).
R. Dunlop *et al.*, PRC 93, 062801(R) (2016).

Technical and Overview Publications

J.K. Smith *et al.*, NIM A 922, 47 (2019).
A.B. Garnsworthy *et al.*, NIM A 918, 9 (2019).
A.B. Garnsworthy *et al.*, NIM A 853, 85 (2017).
U. Rizwan *et al.*, NIM A 820, 126 (2016).
A.B. Garnsworthy, Acta Phys.Pol. B, 47, 713 (2016).
C.E. Svensson and A.B. Garnsworthy, Hyp. Int. 225, 127 (2014).

17/07/2022

Superallowed Fermi β Decay

For the special case of $0^+ \rightarrow 0^+$ (pure Fermi) β decays between isobaric analogue states (superallowed) the matrix element is that of an isospin ladder operator:

$$M_{fi}|^2 = (T - T_Z)(T + T_Z + 1) = 2$$
 (for T=1)

Strategy: Measure superallowed ft-values, deduce G_V and V_{ud} :

 $|V_{ud}| = G_V / G_F - Fermi coupling constant$

Vector coupling constant

17/07/2022

ft = $\frac{\kappa}{2 G_v^2}$

The Standard Model of particle physics

The CKM matrix plays a central role in the Standard Model

In the Standard Model the CKM matrix describes a unitary transformation:

$$V_{ud}^2 + V_{us}^2 + V_{ub}^2 = 1$$

The first row of the CKM matrix provides the most demanding experimental test of the unitarity condition.

A study of the ⁶⁴Zn(p,t)⁶²Zn reaction disagrees with previous transfer reaction measurements on the spin of the 2.342 keV level in ⁶²Zn

K. G. LEACH et al.

PHYSICAL REVIEW C 88, 031306(R) (2013)

 2σ shift in TH δ_{C1}

TABLE II. A comparison of the unscaled and scaled isospin-mixing correction terms for 62 Ga, using both the previous 0⁺₂ excitation energy from Ref. [27] and the value presented here. The result of the new energy scaling lowers the δ_{C1} central value by nearly a factor of two. The adopted values in each case are shown in bold and result from the average of the MSDI3 and GXPF1 calculations. The uncertainties used for the adopted values are described further in the text.

Shell model		Unscaled		Ref. [27]	Previous scaling		This work	New scaling	
Interaction	$\frac{E_x(0_2^+)}{(\text{MeV})}$	$\frac{\delta^{1}_{C1}}{(\%)}$	δ_{C1} (%)	$\begin{array}{c} E_x(0_2^+) \\ (\text{MeV}) \end{array}$	δ^{1}_{C1} (%)	δ_{C1} (%)	$\begin{array}{c} E_x(0_2^+) \\ (\text{MeV}) \end{array}$	$\frac{\delta^1_{C1}}{(\%)}$	δ_{C1} (%)
MSDI3	2.263	0.089	0.350	2.342	0.084	0.329	3.045	0.049	0.193
GXPF1 2.320 0.160 0.221 Adopted value					0.159 0.120(40)	0.219		0.093	0.128 0.160(70)

W. Satula et al., Phys. Rev. C 86, 054316 (2012)

Victoria Vedia TRIUMF Science week

A.D. MacLean et al., PRC 102, 054325 (2020).

GRIFFIN studies around doubly-magic ¹³²Sn

Two beamtime periods with GRIFFIN

- 2 publications, 4 in preparation
- 2 PhD thesis, 1 Masters thesis
- 1 PhD thesis in progress

"Beta-decay and beta-delayed neutron decay of the N=82 nucleus ¹³¹In",

R. Dunlop et al., PRC 99, 045805 (2019).

¹²⁹In July 2016, ~600pps, 2.7hrs
¹³¹In July 2016, ~600pps, 2hrs
¹³²In July 2016, ~70pps, 63hrs
¹³³In July 2016, ~1pps, 18hrs

Led by Corina Andreoiu F. Garcia, PhD thesis in progress (SFU) K. Whitmore *et al.*, PRC 102, 024327 (2020). F.H. Garcia *et al.*,Phys.Rev.C103,024310 (2021)

¹²⁸Cd Aug 2015, ~1000pps, 6.5hrs
¹²⁹Cd Aug 2015, ~150pps, 13hrs
¹³⁰Cd Aug 2015, ~25pps, 38hrs
¹³¹Cd Aug 2015, ~1pps, 32hrs
Led by Iris Dillmann and Reiner Kruecken
N.Bernier, PhD thesis (2018) UBC
Y. Saito, MSc thesis (2018) UBC
R. Dunlop, PhD thesis (2019) Uni. Of Guelph
Y. Saito *et al.*, PRC 102, 024337 (2020)
1 manuscripts in preparation

Key nuclear data for r-process

M. Mumpower et al., Prog. Part. Nucl. Phys. 86, 86 (2016)

17/07/2022

A recent experiment probed the structure of doubly magic ⁷⁸Ni.

- ¹⁸⁶Pb with three low-lying 0⁺ states
 - Z=82 closed shell, N=104 mid-shell
 - Ground, oblate, prolate

17/07/2022

- 2p-2h and 4p-4h proton excitations out of Z=82 spherical closed shell into h_{9/2}, e.g.
- Excitations interact with open neutron shell

Andreyev et al., Nature 405 (2000) 430 Duguet et al., PLB 559 (2003) 201 An excited 2^+ state was observed at only 0.31 MeV above the 2^+_1 , suggesting shape coexistence in this nucleus.

Taniuchi, R et al., Nature 569 (2019) 53

22

Nowacki *et al.** proposed ⁷⁸Ni to be a portal to the fifth island of inversion.

79Br	80Br	81Br	82Br	83Br	84Br	85Br	86Br	87Br	88Br	8
78Se	79Se	80Se	81Se	8258	83Se	84Se	85Se	86Se	87Se	8
77As	78As	79As	80As	81As	82As	83As	84As	85As	86As	8
76Ge	77Ge	78Ge	79Ge	80Ge	81Ge	82Ge	83Ge	84Ge	85Ge	8
75Ga	76Ga	77Ga	78Ga	79Ga	80Ga	81Ga	82Ga	83Ga	84Ga	8
74Zn	76Zn	76Zn	77Zn	78Zn	79Zn	80Zn	81Zn	82Zn	83Zn	8
73Cu	74Cu	75O1	76Cu	77C1	78Cu	79Cu	80Cu	81Cu	82Cu	
72Ni	73Ni	74Ni	7 5Ni	76Ni	77Ni	78Ni	79Ni	80Ni		

NNDC, Brookhaven National Laboratory

*Nowacki. F.: Poves. A.: Caurier. E. and Bounthong. B.: PRL 117. 272501 (2016)

Victoria Vedia TRIUMF Science week

An experiment at ALTO reported a new state 0^+ state in ⁸⁰Ge at 639 keV, from observation of a conversion electron peak at 628 keV.

A coincidence was also observed between the 628-keV conversion electron and a 1764-keV γ -ray from a new state at 2403 keV.

The binding electron of the K-shell electron in ⁸⁰Ge is 11 keV

Victoria Vedia TRIUMF Science week

Gottardo, A. et al., PRL 116, 182501 (2016)

The GRIFFIN experiment used PACES, but did not detect the 628-keV conversion electron peak.

ALTO I⁶²⁸: ~0.08%

Gottardo, A. et al., PRL 116, 182501 (2016) Garcia. F. H. et al., PRL 125, 172501 (2020) GRIFFIN 2σ limit: <0.02%

F.H. Garcia et al., PRL 125, 172501 (2020).

Detection limits were calculated to verify non-observation.

ALTO I₁₇₆₄/I₁₇₇₂: 0.3

GRIFFIN I_{1764}/I_{1772} 2 σ limit: 0.003

Gottardo, A. et al., PRL 116, 182501 (2016) Garcia, F. H. et al., PRL 125, 172501 (2020) F.H. Garcia et al., PRL 125, 172501 (2020).

Future developments and Physics opportunities

Ancillary detector for Rare Isotope Event Selection (ARIES) A major upgrade of the SCEPTAR beta-tagging array for GRIFFIN

New ARIES beta-tagging array enables:

- Counting of high source activities ~20MBq with ~90% solid-angle coverage.
- Beta-gamma angular correlations with >50 unique angles.
- Beta-gamma fast coinc. timing (few ps) with LaBr₃(Ce) detectors (x2 eff. increase over ZDS).
- Easy and economical replacement of detectors contaminated with long-lived activity.

Geometry optimized for GRIFFIN with 1 beta paddle for each HPGe crystal, + 8 triangles + 4 downstream = (36 US)+(40 DS) = 76 total channels

- 1.5mm thick BC422Q ultra-fast plastic scintillator.
- Light read-out using SiPM sensors printed on flexible circuit board ~50µm thickness and held in place with a 3D-printed support structure will provide energy and fast-timing signal.
- Processing the GRIFFIN DAQ.

First experiments december 2022

Physics opportunities

- Lifetime measurements
- $\beta = \beta \gamma$ angular correlations
- POLARIS: Spin polarized beams to GRIFFIN

Future developments and Physics opportunities

RCMP: Regina Cube for Multiple Particles

- Auxiliary detector for GRIFFIN
 - Charged particle detector
 - α decay and β delayed particles
 - Multiple particles (β2p, βαp, ...)
- 6 DSSD detectors (micron BB7)
 - Active area: 64 x 64 mm²
 - 6x(32+32) strips = 384 channels
 - Thickness: 1mm (~12 MeV protons)
 - Resolution ≤ 50 keV (FWHM)
- Preliminary design study
 - Compatibility with GRIFFIN
 - Optimized physical geometry
 - Estimated overall efficiency
 - Quantified transparency to γ rays
 - Michael Hladun (Regina)*

University of Regina

DAEMON:

Detector Array for Energy Measurements Of Neutrons

Thank you!!!

Also many thanks for the plots slides or material to A.B. Garnsworthy, F.H. Garcia, A.D. MacLean, C.Andreoiu and G. Hackman

vvedia@triumf.ca

Victoria Vedia TRIUMF Science week

Gamma-Gamma Angular Correlation Analysis

J.K. Smith, A.C. MacLean *et al.* NIM A 922, 47 (2019). *https://arxiv.org/abs/1807.07570*

Development of $\gamma - \gamma$ angular correlation analysis techniques with GRIFFIN.

• Map the attenuation coefficients over the full $\gamma - \gamma$ energy surface.

 $W(\theta) = A_{00}[1 + a_2 P_2(\cos \theta) + a_4 P_4(\cos \theta)]$

where

 $a_i = A_{ii} / A_{00}.$

 $a_2 = \beta c_{2,}$ and $a_4 = \gamma c_4$ where c is fitted coefficient, and a is true coefficient

 β and γ coefficients are available for the 110mm distance here:

https://griffincollaboration.github.io/AngularCorrelationCoefficients/

17/07/2022

Connor Natzke (CSM/TRIUMF) working on 145mm surface simulations in 2021.