A Prototype Compact Accelerator-based Neutron Source for Canada for Medical and Scientific Applications

Dalini D. Maharaj

2022 Science Week – Monday 18th July 2022

A Prototype Compact Accelerator-based Neutron Source for Canada for Medical and Scientific Applications

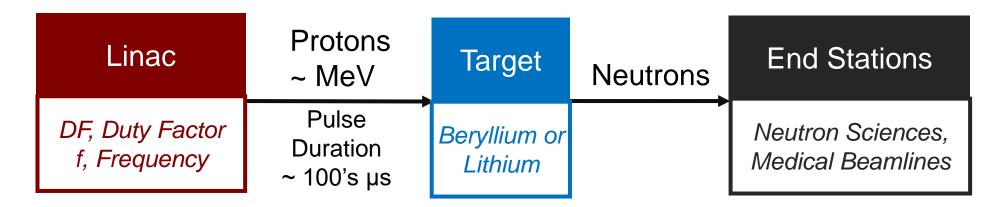
Dalini D. Maharaj

2022 Science Week – Monday 18th July 2022

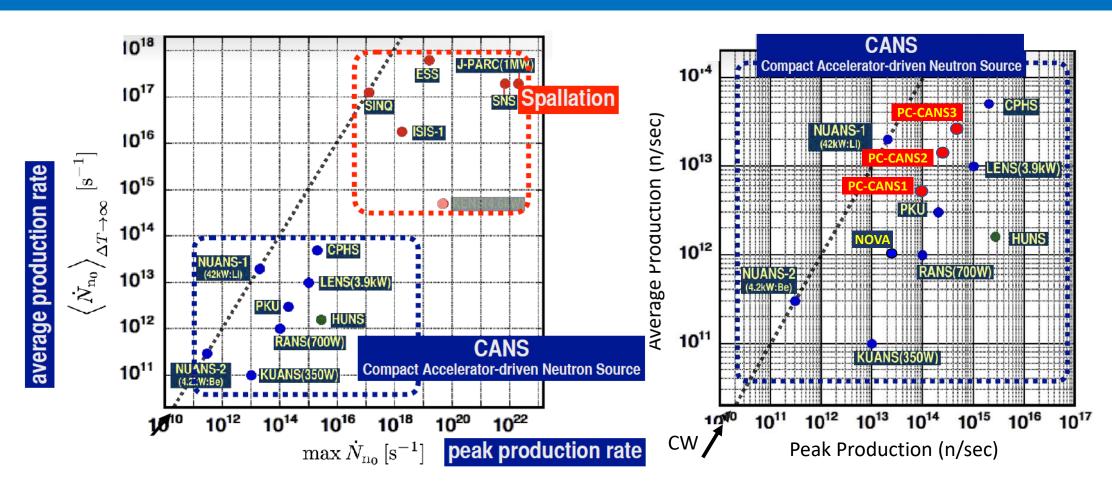
Overview


- Why does Canada need neutrons?
- Overview of Compact Accelerator-based Neutron Sources (CANS)
- The Prototype Canadian CANS
- Objectives of Target Moderator Reflector Optimization
- Current Studies, Timeline & Impact

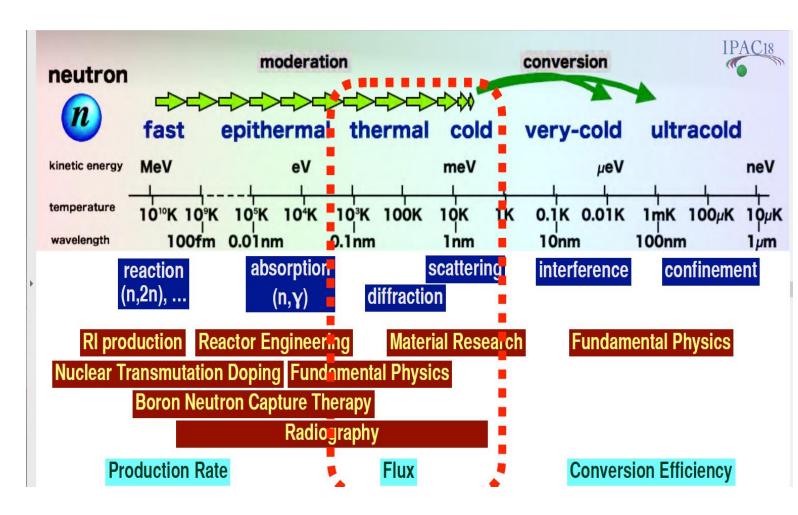
Current Status of Neutron Beams in Canada


- Neutron Gap National Research Universal (NRU) reactor shut down in 2018
- McMaster Nuclear Reactor only source of neutron beams in Canada

- Similar story globally major research reactors closed e.g. BER-II, JEEP and Orphée
- Need new (affordable) pathways for neutron production
- Demand for high brilliance, pulsed neutron beams in Canada


The Compact Accelerator-based Neutron Source (CANS) Concept

Advantages


- I. Compact less shielding required
- II. Lower cost when compared with reactor and spallation sources
- III. High brilliance, pulsed neutron beams realized
- IV. Scalable technology via
 - Boosting proton energy
 - Increasing accelerator current

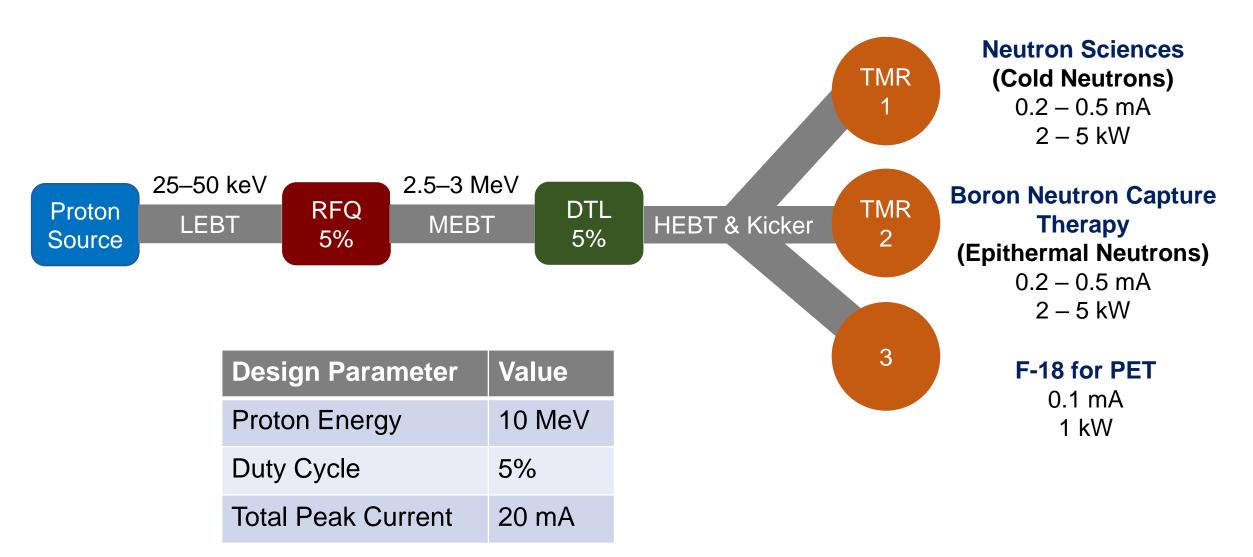
Global Neutron Landscape

- CANS provide neutrons to serve most user needs
- PC CANS designed to be competitive against similar scale sources

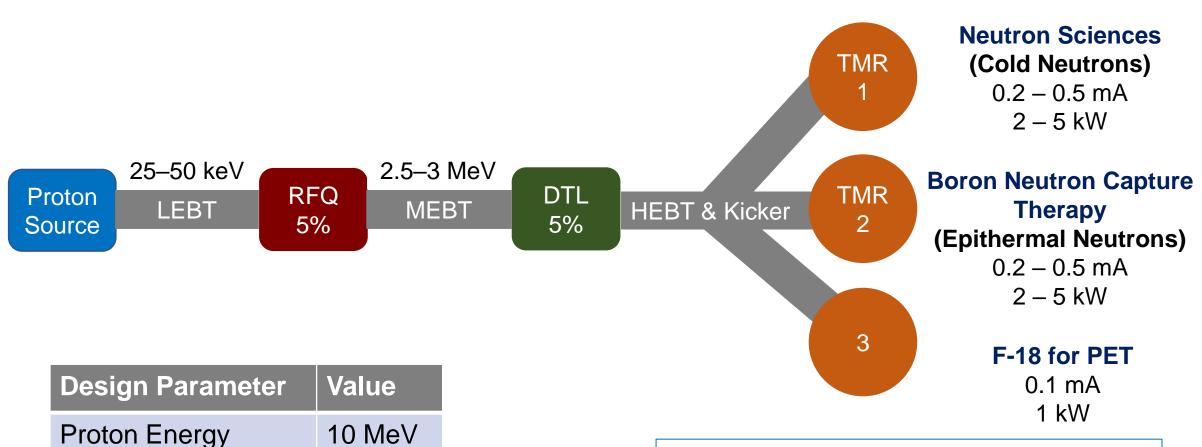
Neutron Beam Applications

Neutron Sciences

I. Thermal Neutrons 10 meV < E < 100 meV e.g. diffraction to resolve crystal structures ~ Angstroms


II. Cold Neutrons

E < 10 meV


e.g. large scale structures

Boron Neutron Capture Therapy (BNCT)
Epithermal Neutrons
0.5 eV < E < 10 keV

Overview and Objectives of the PC CANS

Overview and Objectives of the PC CANS

Details of linac conceptual designs see Mina Abbaslou's poster during tomorrow's poster session at 3:30pm

2022-07-18

Duty Cycle

Total Peak Current

5%

20 mA

Performance at End Stations

Application		I _{avg} /I _{pk}				
		PC-CANS 1		PC-CANS 2	PC-CANS 3	
		0.1/2	0.2/4	0.5/10	1/20	
Neutron Science	Cold Yield (n/cm²/s)	-	$2.8 \times 10^{5}/5.6 \times 10^{6}$	$7 \times 10^5/1.4 \times 10^7$	$1.4 \times 10^6/2.8 \times 10^7$	
	Thermal Yield (n/cm ² /s)	-	$1.3 \times 10^6/2.6 \times 10^7$	$3.3 \times 10^6/6.5 \times 10^7$	$6.5 \times 10^6 / 1.3 \times 10^8$	
BNCT	Epithermal Yield (n/cm²/s)	-	1 × 10 ⁸	2.5×10^{8}	5 × 10 ⁸	
PET	Saturation Yield (GBq)	240	-	-	-	

- **I. Small-angle neutron scattering** High brilliance, pulsed, cold neutron beams of duration, 0.1-0.8 ms, at repetition rates of ≈ 50 Hz
- II. Boron Neutron Capture Therapy Therapeutic epithermal neutron flux of > 1×10⁸ n/s are possible, enabling a BNCT R&D station
- III. F-18 Isotope Production for PET Competitive rates for F-18 production

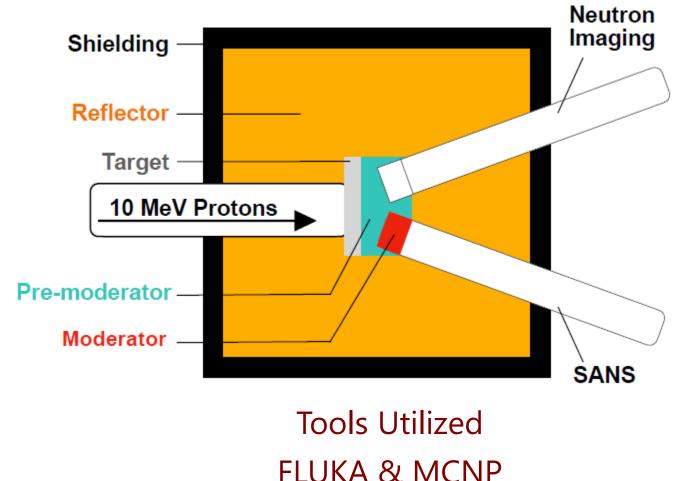
Performance at End Stations

Application		I _{avg} /I _{pk}				
		PC-CANS 1		PC-CANS 2	PC-CANS 3	
		0.1/2	0.2/4	0.5/10	1/20	
Neutron Science	Cold Yield (n/cm²/s)	1	$2.8 \times 10^{5}/5.6 \times 10^{6}$	$7 \times 10^5/1.4 \times 10^7$	$1.4 \times 10^6/2.8 \times 10^7$	
	Thermal Yield (n/cm²/s)	1	$1.3 \times 10^6/2.6 \times 10^7$	$3.3 \times 10^6/6.5 \times 10^7$	$6.5 \times 10^6 / 1.3 \times 10^8$	
BNCT	Epithermal Yield (n/cm²/s)	<u>-</u>	1 × 10 ⁸	2.5 × 10 ⁸	5 × 10 ⁸	
PET	Saturation Yield (GBq)	240	-	-	-	

- **I. Small-angle neutron scattering** High brilliance, pulsed, cold neutron beams of duration, 0.1-0.8 ms, at repetition rates of ≈ 50 Hz
- II. Boron Neutron Capture Therapy Therapeutic epithermal neutron flux of $> 1 \times 10^8$ n/s are possible, enabling a BNCT R&D station
- III. F-18 Isotope Production for PET Competitive rates for F-18 production

TMR
Optimization
Important

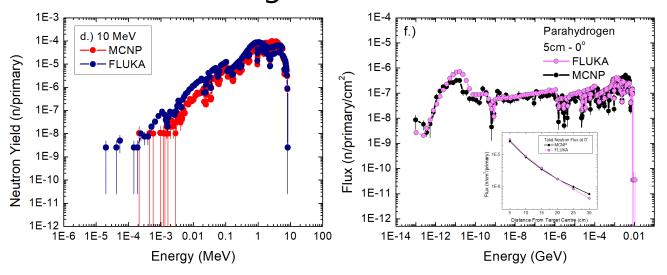
Baseline Target Moderator Reflector (TMR) System for Neutron Sciences


Beryllium Target – Produces neutrons via stripping reactions

Pre-moderator – slows neutrons from ~ MeV to thermal energies ~10-100 meV

Moderator – slows thermal neutrons to cold energies < 10 meV

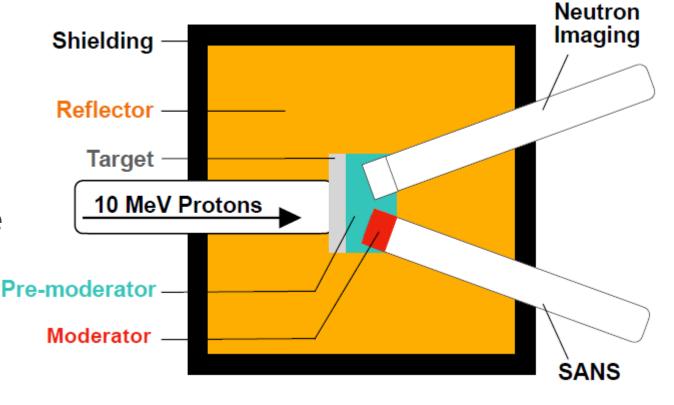
Reflector – backscatters high energy neutrons for further moderation


Shielding – protects users from exposure to harmful radiation

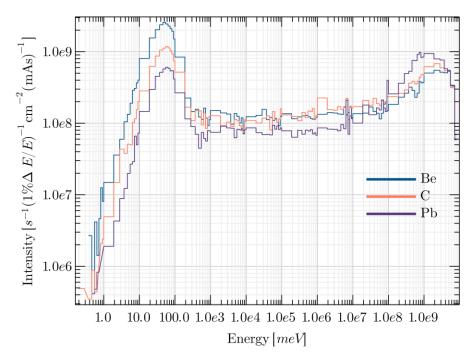
FLUKA & MCNP

Simulation Tools for Target Moderator Optimization

- FLUKA optimized for high energy particle transport but agrees well at 10 MeV
- Custom cross sections for moderator materials in MCNP
- Target-Moderator-Reflector studies for cold neutron beamlines in MCNP
- Target development and shielding studies in FLUKA

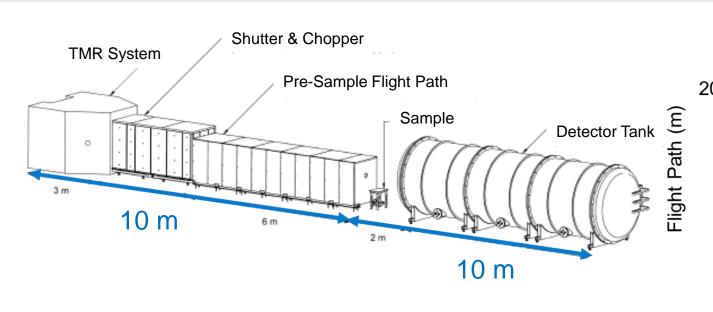


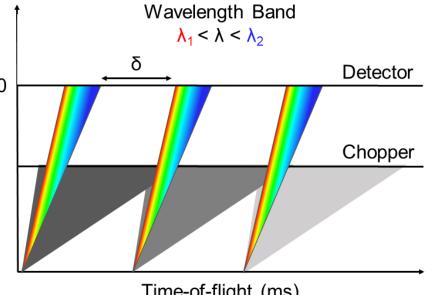
[1] R. Laxdal, Journal of Neutron Research 23 99-117, (2021).


[2] D. D. Maharaj et al, arXiv:2205.01662v1 [physics.acc-ph] (2022).

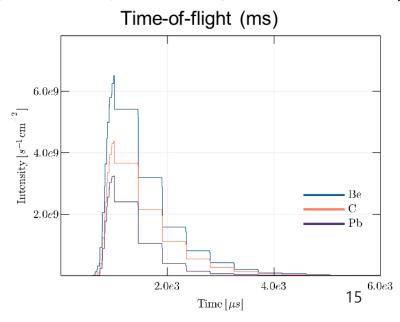
Objectives of Target Moderator Reflector Design & Optimization

- Optimize neutron yields
- Optimize neutron time structure and spectra
- (i) Each neutron instrument has its own requirements for pulse structure
- (ii) Influence of proton time structure on neutron time structure
- (ii) Materials selected for TMR affect neutron time structure and neutron spectrum delivered


Influence of Reflector Selection on Neutron Yield

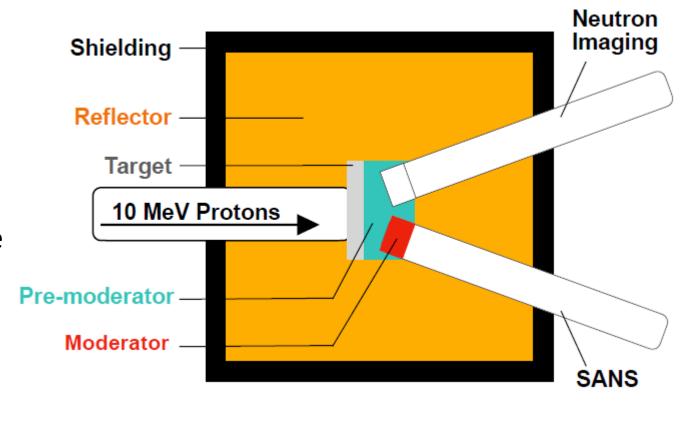


Neutron flux for Mesitylene cold moderator (n/cm²/mC/s)						
	Lead	Graphite	Beryllium			
Cold Flux	3.92×10^{7}	1.09×10^{8}	2.68×10^{8}			
Thermal Flux	8.07×10^8	1.70×10^{9}	3.88×10^{9}			
Total Flux	4.39×10^{9}	5.82×10^{9}	7.99×10^{9}			


- Performance Be > C > Pb with respect to neutron yield
- Beryllium and graphite,
 - Fast neutron spectrum is significantly suppressed
 - Thermal neutron yields are higher

Matching Proton Pulse Structures with SANS Requirements

- 20 m SANS instrument delivers cold neutron bandwidth, $\lambda_1 < \Delta \lambda < \lambda_2$
- Proton pulse duration, source frequency and duty factor, chosen to ensure neutron pulses (or frames) are well separated when they arrive at the detector



Summary of TMR Objectives & Funding Prospects

I. Current Activities in TMR Optimization

- Optimization of neutron pulse duration for SANS instrument
- Optimize material thicknesses for baseline design for two tube arrangement
- Evaluate SANS instrument performance based on optimized solution
- II. CFI application submitted in July 2022

III. Conceptual design report (see link) released in July 2022.

PC CANS Timeline & Scientific Impact

Description	Milestone	Elapsed time
Conceptual design study complete	June 2022	
CFI proposal submitted	July 2022	
CFI Funding Decision	June 2023	Time 0
Technical design report completed	December 2024	T0+18 months
Award finalization	January 2025	T0+19 months
Launch tender process	June 2025	T0+24 months
Scientific optimization complete	December 2025	T0+30 months
Launch long lead procurements	June 2026	T0+36 months
Start building construction	January 2027	T0+43 months
Ready for occupancy	January 3031	T0+91 months
Install source and LEBT	June 2031	T0+96 months
Install RFQ and DTL	October 2031	T0+100 months
Accelerator commissioning started	January 2032	T0+103 months
Install HEBT and TMR/BSA	March 2032	T0+105 months
Install instruments	October 2032	T0+112 months
First moderated neutrons detected	October 2032	T0+112 months
PC-CANS completion	March 2033	T0+117 months

Institutional Benefits

 Enhance core competence in target and accelerator science and technology

Societal Impact

- Advance Canadian science and industry in high-power hadron accelerators
- Open doors to diversity of applications in clean-tech, medicine, and security

Acknowledgments

Mina Abbaslou (TRIUMF/UVic)

Helmut Fritzsche (CNL)

Sana Tabbassum (Purdue)

Daniel Banks (TVB Associates)

Marco Marchetto (TRIUMF)

Zin Tun (TVB Associates)

Norman Muller (TRIUMF)

Alexander Gottberg (TRIUMF/UVic)

Zahra Yamani (CNL)

Robert Laxdal (TRIUMF/UVic)

Vinicius Anghel (CNL)

Oliver Kester (TRIUMF/UVic)

Ronald Rogge (CNL)

Drew Marquardt (UWindsor)

This work is supported by NFRF-E Grant Number NFRFE-2018-00183

Laboratoires Nucléaires Canadiens