

LLRF and event recognition

Outline

- What is LLRF and why do we need it?
- Importance of an event recognition system in LLRF
- Event recognition through Machine Learning/ Machine Learning in the field of particle accelerator
- First steps: Spark detection in TRIUMF's cyclotron

What is LLRF and why do we need it?

Beam travelling along the beam pipe from the low energy section to the high energy section and gains its energy in the different acceleration structures such as he RFQ or DTL

Field needs to be synchronized with the travelling particles

What is LLRF and why do we need it?

Main goal: maintain the stability of the RF field, and minimize the required overhead power. RF field depends on:

•	Amplitude			
•	Phase	Field stabilization		
•	Frequency	Cavity tuning		

- Perturbations can be seen everywhere in an accelerator and affect the Amplitude, Phase and Frequency
 - Power supply

Beam loading ٠

- Temperature drifts •
- Microphonics •
- ect. •

- Lorentz force ٠ detuning
- ect. ٠

PI feedback is the classical way to deal with random perturbation

Feedforward is the classical way to deal with repetitive perturbations

Components involved in a LLRF system

Ramona Leewe, Ken Fong

Components involved in a LLRF system

Ramona Leewe, Ken Fong

Components involved in a LLRF system

Machine learning in the field of particle accelerators

Neural Networks for Modeling and	Contro	Paper Appearing in the Proceedings of the 2016 International Particle Accelerator Conference (IPAC), May 8-13, 2016				
A. L. Edelen, IEEE Student Member, S.G. Biedron, IEEE Senior Member, B.F. D. Edstrom Jr., S.V. Milton, IEEE Senior Member, P. Stabile, IEEE Member	E. Chase, <i>Ii</i>	NEURAL NETWORK MODEL OF THE PXIE RFQ COOLING SYSTEM AND RESONANT FREQUENCY RESPONSE* A.L. Edelen [†] , S.G. Biedron ¹ , S.V. Milton, Colorado State University, Fort Collins, CO D. Bowring, B.E. Chase, J.P. Edelen, J. Steimel, Fermilab, Batavia, IL ¹ also at University of Ljubljana, Ljubljana, Slovenia				
APPLYING ARTIFICIAL INTELLIGENCE TO A	A <u>TORS*</u>					
Scheinker [†] , D. Rees, B. Garnett, S. Milton, Los Alamos National Laboratory, Lo A. L. Edelen, D. Bohler, SLAC National Accelerator Laboratory, Menlo Pa Opportunities in Machine Learning for Particle Accelerators		12th Int. Workshop on Emerging Technologies and Scientific Facilities Controls PCaPAC2018, Hsinchu, Taiwan JACoW Publishing doi:10.18429/JACoW-PCaPAC2018-THCB5 III INTELLIGENT CONTROLS AND MODELING FOR PARTICLE ACCELERATORS AND OTHER RESEARCH AND INDUSTRIAL INFRASTRUCTURES INFRASTRUCTURES S. G. Biedron ^{†,1} , Element Aero, Chicago, IL 60643 USA.				
Editors A. Edelen and C. Mayes	ELSEVIER	Available on Sci IFAC Papers	ine at www.sciencedirect.com	CONFERENCE PAPER ARCHIVE	a USA	
SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA D. Bowring Fermi National Accelerator Laboratory, Batavia, IL 60510, USA		Anomaly De- using a No A. Nawaz * S. F * Deutsches Elektr ayla.na ** Univers *** University of L	tection for the Euro nlinear Parity Space 'feiffer * G. Lichtenberg ** P ronen Synchrotron, Hamburg, G waz@desy.de, sven.pfeiffer@des; ity of Applied Science Hamburg lichtenberg@haw-hamburg.de) uebeck (e-mail: philipp.rostalski	ppean XFEL e Method P. Rostalski *** ^{lermany} (e-mail: y.de). (e-mail: @uni-luebeck.de)		
					<u> </u>	

Fault detection and prevention through machine learning; example

EUXFEL: so far quench detection realized through loaded Q measurement

 $Q_L < threshold$

- Problem: Quench detection after it happened
- New idea: Anomaly detection of the field to prevent a quench from happening?

Anomaly Detection for the European XFEL using a Nonlinear Parity Space Method A. Nawaz* S. Pfeiffer* G. Lichtenberg** P. Rostalski*** * Deutsches Elektronen Synchrotron, Hamburg, Germany (e-mail: ayla.nawaz@desy.de, sven.pfeiffer@desy.de).

ayla.nawaz@desy.de, sven.pfeiffer@desy.de). ** University of Applied Science Hamburg (e-mail: lichtenberg@haw-hamburg.de) *** University of Luebeck (e-mail: philipp.rostalski@uni-luebeck.de)

• Realization:

- Build a cavity model including Lorentz force and beam loading
- Create residuals/error signal through comparison of simulation and measurement (database with quenches must be available)
- Plot the residuals with respect to each other
- Clusters within the plot suggest decision boundaries for online operation

• Results:

- Anomalies could be detected on an example set successfully
- So far online operated offline, real time anomaly detection to be tested

Fault detection for TRIUMF's cyclotron/ spark detection Part of the cyclotron LLRF system upgrade

Spark detection so far:

• Spark indication:

- Abrupt fall of the Dee voltage, increase in reversed power
- Spark detection through rate of change of the Dee voltage:
 - the rate of change of the Dee voltage is measured
 - Categorized in
 - Small RF drive unchanged
 - Medium RF drive switched off + quick start
 - Large RF drive switched off + normal start

Classification problematic, system can be damaged if not switched off

Idea:

Can we use machine learning to identify a spark?

Can we detect where it occurred in the system?

- Different approaches:
 - Model based
 - Requires good knowledge of the system, exact modelling is important
 - Non model based
 - Supervised machine learning requires manual classification of each event and then trains a neural network

Machine learning and fault detection in the field of particle accelerators

Fault detection for TRIUMF's cyclotron/ spark detection Part of the cyclotron LLRF system upgrade

Spark detection so far:

• Spark indication:

- Abrupt fall of the Dee voltage, increase in reversed power
- Spark detection through rate of change of the Dee voltage:
 - the rate of change of the Dee voltage is measured
 - Categorized in
 - Small RF drive unchanged
 - Medium RF drive switched off + quick start
 - Large RF drive switched off + normal start

Classification problematic, system can be damaged if not switched off

Idea:

Can we use machine learning to identify a spark?

Can we detect where it occurred in the system?

• Different approaches:

Model based

 Requires good knowledge of the system, exact modelling is important

Non model based

• Supervised machine learning requires manual classification of each event and then trains a neural network

Machine learning and fault detection in the field of particle accelerators

Machine learning and fault detection in the field of particle accelerators

Ramona Leewe, Ken Fong

Model-based spark identification/ cyclotron model

Matlab/Simulink toolbox simscape

Machine learning and fault detection in the field of particle accelerators

Model verification

Spark within the resonator

RF drive being switched off

Edge OR ttx F

Machine learning and fault detection in the field of particle accelerators

Ramona Leewe, Ken Fong

Residual generation

Yellow data trace used for pre classification

Pre – classification based on the RF drive in

Residual calculation

$$r_{1} = (y - ysim_{RFon})^{2}$$
$$r_{2} = (y - ysim_{RFonfailed})^{2}$$

• For a decrease of the RF drive

$$r_{3} = (y - ysim_{RFoff})^{2}$$
$$r_{4} = (y - ysim_{spark})^{2}$$

Machine learning and fault detection in the field of particle accelerators

Residuals for 400 captured events

- Clear cluster separation for both plots
- The cyclotron event image database can be categorized in terms of the event
- All 'other events' are located in the upper plot. Other events include:
 - Increase in reversed power due to frequency mismatch (e.g. temperature changes)
 - Change of operating field amplitude
- Builds the foundation for a deeper analysis for spark events or failed RF on events

Machine learning and fault detection in the field of particle accelerators

Summary and Outlook

Summary

- The existing images can be categorized with respect to
 - RF on successful
 - RF on failed
 - RF off events
 - Sparks
 - Other events

Outlook, next steps

- Analysis of spark diagnostic with respect to the location where they occurred
 - How does a spark develop in vacuum?
 - Add signals like the reversed power or the transmission line signal
- Long term goal: Online classification and real time reaction system
- Other Machine Learning application within LLRF, e.g.
 - Failed cyclotron start up events
 - Improved start up sequence

٠

. . .

Thank you for your attention!